Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T03:01:04.892Z Has data issue: false hasContentIssue false

InAsN Grown by Plasma-Assisted Gas Source MBE

Published online by Cambridge University Press:  21 March 2011

Ding-Kang Shih
Affiliation:
National Taiwan University, Dept. of Electrical Engineering, Taipei, Taiwan, R.O.C.
Hao-Hsiung Lin
Affiliation:
National Taiwan University, Dept. of Electrical Engineering, Taipei, Taiwan, R.O.C.
Tso-Yu Chu
Affiliation:
National Taiwan University, Dept. of Electrical Engineering, Taipei, Taiwan, R.O.C.
T. R. Yang
Affiliation:
National Taiwan Normal University, Dept. of Physics, Taipei, Taiwan, R.O.C.
Get access

Abstract

We report the structural, electrical and optical properties of bulk InAsN alloy with various nitrogen contents deposited on (100) InP substrates by using plasma-assisted gas source molecular beam epitaxy. It is found that the fundamental absorption edge of InAsN, as compared to that of InAs, shifts to higher energy due to Burstein-Moss effect. A dramatic increase of the electron effective mass in a nitrogen-containing III-V alloy is also observed from infrared reflectivity and Hall measurement on these degenerate InAsN samples. The sizeable increase on electron effective mass is consistent with the theoretical predictions based on band-anticrossing model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kondow, M., Uomi, K., Kitatani, T., Watahiki, S., and Yazawa, Y., J. Crystal Growth 164, 175 (1996).Google Scholar
2. Shan, W., Walukiewicz, W., Ager, J. W. III, Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M., and Kurtz, S. R., Phys. Rev. Lett. 82, 1221 (1999).Google Scholar
3. Burstein, E., Phys. Rev. 93, 632 (1954).Google Scholar
4. Shih, D. K., Lin, H. H., Song, L. W., Chu, T. Y., and Yang, T. R., Proceeding of 13th Indium Phosphide and Related Materials, Nara, Japan (2001), p.555.Google Scholar
5. Hjalmarson, H.P., Vogl, P., Wolford, D. J., and Dow, J. D., Phys. Rev. Lett. 44, 810 (1980).Google Scholar
6. Ruan, Y. C. and Ching, W. Y., J. Appl. Phys. 262, 2885 (1987).Google Scholar
7. Stiens, J. and Vounckx, R., J. Appl. Phys. 76, 3526 (1994).Google Scholar
8. Zhang, X., J.Chua, S., Liu, W., and Chong, K. B., Appl. Phys. Lett. 72, 1890 (1998).Google Scholar
9. Reynolds, D. C., Look, D. C., and Jogai, B., J. Appl. Phys. 88, 5760 (2000).Google Scholar
10. Swaminathan, V. and Macrander, A. T., Materials Aspects of GaAs and InP Based Structures (Prentice-Hall, New Jersey, 1991), p.21.Google Scholar
11. Dobbelaere, W., De Boeck, J., Van Mieghem, P., Mertens, R., and Borghs, G., J. Appl. Phys. 69, 2536 (1991).Google Scholar