Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T03:27:00.786Z Has data issue: false hasContentIssue false

Raman and Photoluminescence Mapping of Lattice Matched InGaP/GaAs Heterostructures

Published online by Cambridge University Press:  21 March 2011

G. Attolini
Affiliation:
MASPEC-CNR Institute, Parco Area Delle Scienze, 37/A Fontanini, 43010 Parma, Italy
P. Fallini
Affiliation:
MASPEC-CNR Institute, Parco Area Delle Scienze, 37/A Fontanini, 43010 Parma, Italy
F. Germini
Affiliation:
MASPEC-CNR Institute, Parco Area Delle Scienze, 37/A Fontanini, 43010 Parma, Italy
C. Pelosi
Affiliation:
MASPEC-CNR Institute, Parco Area Delle Scienze, 37/A Fontanini, 43010 Parma, Italy
O. Martínez
Affiliation:
Física de la Materia Condensada, ETSII, 47011Valladolid, Spain
L. F. Sanz
Affiliation:
Física de la Materia Condensada, ETSII, 47011Valladolid, Spain
M. A. González
Affiliation:
Física de la Materia Condensada, ETSII, 47011Valladolid, Spain
J. Jiménez
Affiliation:
Física de la Materia Condensada, ETSII, 47011Valladolid, Spain
Get access

Abstract

The influence of the substrate on composition and CuPt-type spontaneous order of MOVPE lattice matched InGaP/GaAs layers was studied. The study was carried out by microRaman and microphotoluminescence. The order was determined by the band gap, while the Raman parameters were also contributed by the surface topography that was also related to the type of substrate. The spontaneous order increases with Si- doping of the substrates. Doping the layers with Zn randomises the alloy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shealy, J.R., Schaus, C.F., Eastman, L.F.; Appl. Phys. Lett. 48, 242 (1986)Google Scholar
2. Kuech, T.F., Wolford, D.J., Venhoff, E., Deline, V., Mooney, P.M., Potemski, R., Bradley, J.; J.Appl. Phys. 62, 632 (1987)Google Scholar
3. Wang, Y.Q., Wang, Z.L., Brown, T., Brown, A., May, G.; J. Electron. Mater. 29, 1372 (2000)Google Scholar
4. Krost, N. Esser, H. Selber, J. Christen, W. Richter, D. Bimberg, L.C. Su, G.B. Stringfellow; J. Vac. Sci. Technol. 12, 2558 (1994)Google Scholar
5. Yoon, S.F., Mah, K.W., Zheng, H.Q.; Opt. Mater. 14, 59 (2000)Google Scholar
6. Sasaki, K. Tsuchida, Y. Narukawa, Y. Kawakami, S.G. Fujita, Y. Hsu, G.B. Stringfellow; J.Appl. Phys. 89, 343 (2001)Google Scholar
7. Alsina, F., Mestres, N., Pascual, J., Geng, C., Ernst, P., Scholz, F.; Phys.Rev. B 53, 12994 (1996)Google Scholar
8. Sinha, K., Mascarenhas, A., Kurtz, S.R., Olson, J.M.; J.Appl.Phys. 78, 2515 (1995)Google Scholar
9. Zachau, M., Masselink, W.T.; Appl. Phys. Lett. 60, 2098 (1992)Google Scholar
10. Suzuki, T., Gomyo, A., Iijima, S., Kobayhasi, K., Kawata, S., Hino, T., Yuasa, T.; Jpn. J. Appl. Phys. 27, 2098 (1988)Google Scholar
11. Olsen, G.H., Nuese, C.J., Smith, R.T.; J. Appl. Phys. 49, 5523 (1978)Google Scholar
12. Suzuki, T., Gomyo, A., Kobayhasi, K., Kawata, S., Iijima, S.; Jpn. J. Appl. Phys. 27, L1549 (1988)Google Scholar