Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T03:26:22.696Z Has data issue: false hasContentIssue false

Near-field photoluminescence spectroscopy of localized states in InGaAsN alloys

Published online by Cambridge University Press:  21 March 2011

A. M. Mintairov
Affiliation:
Electrical Engineering Department, University of Notre Dame, Notre Dame, IN, 46556 Ioffe Physical-Technical Institute RAS, Polytechnicheskaya 26, St.Petersburg, Russia
P. A. Blagnov
Affiliation:
Ioffe Physical-Technical Institute RAS, Polytechnicheskaya 26, St.Petersburg, Russia
T. Kosel
Affiliation:
Electrical Engineering Department, University of Notre Dame, Notre Dame, IN, 46556
J. L. Merz
Affiliation:
Electrical Engineering Department, University of Notre Dame, Notre Dame, IN, 46556
V. M. Ustinov
Affiliation:
Ioffe Physical-Technical Institute RAS, Polytechnicheskaya 26, St.Petersburg, Russia
A. S. Vlasov
Affiliation:
Electrical Engineering Department, University of Notre Dame, Notre Dame, IN, 46556
R. E. Cook.
Affiliation:
Argonne National Laboratory, Argonne, IL, 60439.
Get access

Abstract

We used near-field magneto-photoluminescence scanning microscopy to study structural and optical properties of quantum-dot-like compositional fluctuations in GaAsN and InGaAsN alloys. We show that these fluctuations manifest themselves by the appearance of narrow emission lines (halfwidth 0.5−2 meV) at temperatures below 70K. We estimated the size, density, and nitrogen excess of individual compositional fluctuations (clusters), revealing phaseseparation effects in the distribution of nitrogen in GaAsN and InGaAsN. We found a dramatic difference in the Zeeman splitting of cluster lines between GaAsN and InGaAsN, indicating a strong effect of In on the exciton g-factor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sakai, S., Ueta, Y. and Terauchi, Y., Jpn. J. Appl. Phys. 32, p. 4413 (1993).Google Scholar
2. Wei, S.-H. and Zunger, A., Phys. Rev. Lett. 76, 664 (1996).Google Scholar
3. Mintairov, A. M., Blagnov, P. A., Kosel, T., Merz, J. L., Ustinov, V. M., Vlasov, A. S., Cook, R. E., Phys. Rev. Lett. (in press).Google Scholar
4. Jones, E. D., Allerman, A. A., Kurz, S. R., Modine, N. A., Bajaj, K. K., Tozer, S. W. and Wei, X., Phys. Rev. B 62, 7144 (2000).Google Scholar
5. Varshni, Y. P., Physica 34, 149 (1967).Google Scholar
6. Bockelman, U., Heller, W. and Abstreiter, A., Phys. Rev. B 55, 4469 (1997).Google Scholar
7. Toda, Y., Shinomori, S., Suzuki, K. and Arakawa, Y., Appl. Phys. Lett. 73, 517 (1998).Google Scholar
8. Stepniewski, R., Potemski, M., Wysmolek, A., Pakula, K., Baranowski, J. M., Lusakowski, J., Grzegory, I., Porowski, S., Martinez, G. and Wyder, P., Phys. Rev. B 60, 4438 (1999).Google Scholar
9. Thoai, D. B. Tran, Hu, Y. Z. and S. W. Koch Phys. Rev. B 42, 11261, (1990).Google Scholar
10. Zunger, A. and Mahajan, S., in Handbook on semiconductors, v. 3, Elsevier Amsterdam, (1994).Google Scholar