We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Helium accumulation negatively impacts structural materials used in neutron-irradiated environments, such as fission and fusion reactors. Next-generation fission and fusion reactors will require structural materials, such as steels, that are resistant to large neutron doses yet see service temperatures in the range most affected by helium embrittlement. Previous work has indicated the difficulty of experimentally differentiating nanometer-sized cavities such as helium bubbles from the Ti–Y–O rich nanoclusters (NCs) in radiation-tolerant nanostructured ferritic alloys (NFAs). Because the NCs are expected to sequester helium away from grain boundaries and reduce embrittlement, experimental methods to study simultaneously the NC and bubble populations are needed. In this study, aberration-corrected scanning transmission electron microscopy (STEM) results combining high-collection-efficiency X-ray spectrum images (SIs), multivariate statistical analysis (MVSA), and Fresnel-contrast bright-field STEM imaging, have been used for such a purpose. Fresnel-contrast imaging, with careful attention to TEM-STEM reciprocity, differentiates bubbles from NCs. MVSA of X-ray SIs unambiguously identifies NCs. Therefore, combined Fresnel-contrast STEM and X-ray SI is an effective STEM-based method to characterize helium-bearing NFAs.
The development of effective new tools for structural characterization of disordered materials and systems is becoming increasingly important as such tools provide the key to understanding, and ultimately controlling, their properties. The relatively novel technique of correlograph analysis (i.e., the approach of calculating angular autocorrelations within diffraction patterns) promises unique advantages for probing the local symmetries of disordered structures. Because correlograph analysis examines a component of the high-order four-body correlation function, it is more sensitive to medium-range ordering than conventional diffraction methods. As a follow-up of our previous publication, where we studied thin samples of sputtered amorphous silicon, we describe here the practical experimental method and common systematic errors of electron correlograph analysis. Using both experimental data and numerical simulations, we demonstrate that reliable structural information about the sample can only be extracted from the mean correlograph averaged over a sufficient number of individual results.
Bacterial biofilms relieve themselves from external stresses through internal rearrangement, as mathematically modeled in many studies, but never microscopically visualized for their underlying microbiological processes. The aim of this study was to visualize rearrangement processes occurring in mechanically deformed biofilms using confocal-laser-scanning-microscopy after SYTO9 (green-fluorescent) and calcofluor-white (blue-fluorescent) staining to visualize bacteria and extracellular-polymeric matrix substances, respectively. We apply 20% uniaxial deformation to Pseudomonas aeruginosa biofilms and fix deformed biofilms prior to staining, after allowing different time-periods for relaxation. Two isogenic P. aeruginosa strains with different abilities to produce extracellular polymeric substances (EPS) were used. By confocal-laser-scanning-microscopy all biofilms showed intensity distributions for fluorescence from which rearrangement of EPS and bacteria in deformed biofilms were derived. For the P. aeruginosa strain producing EPS, bacteria could not find new, stable positions within 100 s after deformation, while EPS moved toward deeper layers within 20 s. Bacterial rearrangement was not seen in P. aeruginosa biofilms deficient in production of EPS. Thus, EPS is required to stimulate bacterial rearrangement in mechanically deformed biofilms within the time-scale of our experiments, and the mere presence of water is insufficient to induce bacterial movement, likely due to its looser association with the bacteria.
Silicon oxide used as an intermetal dielectric (IMD) incorporates oxide impurities during both its formation and subsequent processing to create vias in the IMD. Without a sufficient degassing of the IMD, oxide impurities released from the IMD during the physical vapor deposition (PVD) of the glue layer of the vias had led to an oxidation of the glue layer and eventual increase of the via resistances, which correlated with the O-to-Si atomic ratio of the IMD being ~10% excessive as verified by transmission electron microscopy (TEM) analysis. A vacuum bake of the IMD was subsequently implemented to enhance outgassing of the oxide impurities in the IMD before the glue layer deposition. The implementation successfully reduced the via resistances to an acceptable level.
Fluctuation electron microscopy can reveal the nanoscale order in amorphous materials via the statistical variance in the scattering intensity as a function of position, scattering vector, and resolution. However, several sources of experimental artifacts can seriously affect the magnitude of the variance peaks. The use of a scanning transmission electron microscope for data collection affords a convenient means to check whether artifacts are present. As nanodiffraction patterns are collected in serial, any spatial or temporal dependence of the scattering intensity across the series can easily be detected. We present examples of the major types of artifact and methods to correct the data or to avoid the problem experimentally. We also re-cast the statistical formalism used to identify sources of noise in view of the present results. The present work provides a basis on which to perform fluctuation electron microscopy with a high level of reliability and confidence in the quantitative magnitude of the data.
In this work the leaf anatomy of three species of Ficus section Americanae (Miq.) Miq. from Brazil, whose leaves and latex are used in folk medicine is reported. The work was carried out using light and scanning electron microscopy in order to characterize these species and to evaluate their taxonomic significance, and also contribute to the quality control of their ethnodrugs. The three species (Ficus cyclophylla, Ficus elliotiana, and Ficus caatingae) showed hypostomatic leaves, anomocytic stomata, straight epidermal cell outlines, and a dorsiventral mesophyll. Some micro-morphological characters such as density and distribution of epicuticular waxes, glandular trichomes, the length and width of stomata, as well as the palisade of mesophyll and petiole outlines proved to be the most useful and distinctive characters for the separation of species. These may contribute as additional support for the taxonomy of the section and for the quality control of their ethnodrugs.
A dual-beam focused ion beam microscope equipped with a nanomanipulator was used to fabricate slices from within individual hematite (α-Fe2O3) pseudocubes with selected orientations with respect to the original pseudocubes. Transmission electron microanalysis through selected area electron diffraction enabled assignment of each thin section to a particular zone of the hematite lattice. While the pseudocubes are composed of numerous crystallites, 25–50 nm in size, they are not simply polycrystalline particles. Electron diffraction of thin sections showed that while the pseudocubic hematite particles are composed of numerous coherent domains, the individual thin sections display a net crystallographic orientation to the underlying hematite lattice. Quantitative analysis of the lattice misorientation between coherent domains was calculated from the azimuthal spread of electron diffraction peaks and is consistent with a structure that contains small-angle grain boundaries. Based upon this analysis, we conclude that the pseudocubic hematite particles are mosaic crystals, composed of highly oriented coherent domains.
A multiscale approach combining phase-contrast X-ray micro- and nanotomography is applied for imaging a Cretaceous fossil inflorescence in the resolution range from 0.75 μm to 50 nm. The wide range of scale views provides three-dimensional reconstructions from the external gross morphology of the inflorescence fragment to the finest exine sculptures of in situ pollen. This approach enables most of the characteristics usually observed under light microscopy, or with low magnification under scanning and transmission electron microscopy, to be obtained nondestructively. In contrast to previous tomography studies of fossil and extant flowers that used resolutions down to the micron range, we used voxels with a 50 nm side in local tomography scans. This high level of resolution enables systematic affinities of fossil flowers to be established without breaking or slicing specimens.
An important determinant of mechanical properties of bone is Young’s modulus and its variation in individual osteons of cortical bone tissue. Its mechanical behavior also depends on deformation rate owing to its visco- or poroelastic properties. We developed a method to measure dynamical mechanical properties of bulk bone tissue at osteonal level based on scanning acoustic microscopy (SAM) using time-of-flight (TOF) measurements in combination with quantitative backscattered electron imaging (qBEI). SAM-TOF yields local sound velocities and qBEI corresponding material densities together providing elastic properties. Osteons (n=55) were measured in three human femoral diaphyseal ground bone sections (∼30 µm in thickness). In addition, subchondral bone and mineralized articular cartilage were investigated. The mean mineral contents, the mean sound velocities, and the mean elastic modulus of the osteons ranged from 20 to 26 wt%, from 3,819 to 5,260 m/s, and from 21 to 44 GPa, respectively. There was a strong positive correlation between material density and sound velocity (Pearson’s r=0.701; p<0.0001) of the osteons. Sound velocities between cartilage and bone was similar, though material density was higher in cartilage (+4.46%, p<0.0001). These results demonstrate the power of SAM-TOF to estimate dynamic mechanical properties of the bone materials at the osteonal level.
Elimination of the electrostatic objective lens and alternative use of a Cc- and Cs-corrected quadrupole doublet may increase the useful working distance of the helium microscope, improve its resolution from 3 to 0.3 Å, and improve its optimum convergence angle from 0.4 to 4 mrad.
Samples of Zn-21Al-2Cu alloy (Zinalco) that will be heavily deformed were prepared using five different manual mechanical metallographic methods. Samples were analyzed before tensile testing using the orientation imaging microscopy-electron backscatter diffraction (OIM-EBSD) technique. The effect of type and particle size during the final polishing stages for this material were studied in order to identify a method that produces a flat, damage free surface with a roughness of about 50 nm and clean from oxide layers, thereby producing diffraction patterns with high image quality (IQ) and adequate confidence indexes (CI). Our results show that final polishing with alumina and silica, as was previously suggested by other research groups for alloys that are difficult to prepare or alloys with low melting point, are not suitable for manual metallographic preparation of this alloy. Indexes of IQ and CI can be used to evaluate methods of metallographic preparation of samples studied using the OIM-EBSD technique.
Meso-scale structure in polymeric foams determines the mechanical properties of the material. Density variations, even more than variations in the anisotropic void structure, can greatly vary the compressive and tensile response of the material. With their diverse use as both a structural material and space filler, polyurethane (PU) foams are widely studied. In this manuscript, quantitative measures of the density and anisotropic structure are provided by using micro X-ray computed tomography (microCT) to better understand the results of mechanical testing. MicroCT illustrates the variation in the density, cell morphology, size, shape, and orientation in different regions in blown foam due to the velocity profile near the casting surface. “Interrupted” in situ imaging of the material during compression of these sub-regions indicates the pathways of the structural response to the mechanical load and the changes in cell morphology as a result. It is found that molded PU foam has a 6 mm thick “skin” of higher density and highly eccentric morphological structure that leads to wide variations in mechanical performance depending upon sampling location. This comparison is necessary to understand the mechanical performance of the anisotropic structure.
Transverse microradiography (TMR) and electron probe microanalysis (EPMA) are commonly used for characterizing dental tissues. TMR utilizes an approximately monochromatic X-ray beam to determine the mass attenuation of the sample, which is converted to volume percent mineral (vol%min). An EPMA stimulates the emission of characteristic X-rays from a variable volume of sample (dependent on density) to provide compositional information. The aim of this study was to compare the assessment of sound, demineralized, and remineralized enamel using both techniques. Human enamel samples were demineralized and a part of each was subsequently remineralized. The same line profile through each demineralized lesion was analyzed using TMR and EPMA to determine vol%min and wt% elemental composition and atomic concentration ratio information, respectively. The vol%min and wt% values determined by each technique were significantly correlated but the absolute values were not similar. This was attributable to the complex ultrastructural composition, the variable density of the samples analyzed, and the nonlinear interaction of the EPMA-generated X-rays. EPMA remains an important technique for obtaining atomic ratio information, but its limitations in determining absolute mineral content indicate that it should not be used in place of TMR for determining the mineral density of dental hard tissues.