Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T15:39:20.289Z Has data issue: false hasContentIssue false

Aberration-Corrected X-Ray Spectrum Imaging and Fresnel Contrast to Differentiate Nanoclusters and Cavities in Helium-Irradiated Alloy 14YWT

Published online by Cambridge University Press:  06 March 2014

Chad M. Parish*
Affiliation:
Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831, USA
Michael K. Miller
Affiliation:
Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831, USA
*
*Corresponding author.[email protected]
Get access

Abstract

Helium accumulation negatively impacts structural materials used in neutron-irradiated environments, such as fission and fusion reactors. Next-generation fission and fusion reactors will require structural materials, such as steels, that are resistant to large neutron doses yet see service temperatures in the range most affected by helium embrittlement. Previous work has indicated the difficulty of experimentally differentiating nanometer-sized cavities such as helium bubbles from the Ti–Y–O rich nanoclusters (NCs) in radiation-tolerant nanostructured ferritic alloys (NFAs). Because the NCs are expected to sequester helium away from grain boundaries and reduce embrittlement, experimental methods to study simultaneously the NC and bubble populations are needed. In this study, aberration-corrected scanning transmission electron microscopy (STEM) results combining high-collection-efficiency X-ray spectrum images (SIs), multivariate statistical analysis (MVSA), and Fresnel-contrast bright-field STEM imaging, have been used for such a purpose. Fresnel-contrast imaging, with careful attention to TEM-STEM reciprocity, differentiates bubbles from NCs. MVSA of X-ray SIs unambiguously identifies NCs. Therefore, combined Fresnel-contrast STEM and X-ray SI is an effective STEM-based method to characterize helium-bearing NFAs.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The US Government retains and is the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US Government purposes.

References

Bentley, J., Hoelzer, D., Coffey, D.W. & Yarborough, K.A. (2004). EFTEM and spectrum imaging of mechanically alloyed oxide-dispersion-strengthened 12YWT and 14YWT ferritic steels. Microsc Microanal 10(Suppl 2), 662663.CrossRefGoogle Scholar
Bentley, J., Hoelzer, D.T., Tanigawa, H., Yamamoto, T. & Odette, G.R. (2007). Characterization of irradiated nanostructured ferritic steels. Microsc Microanal 13(Suppl 2), 10721073.Google Scholar
Bhattacharyya, D., Dickerson, P., Odette, G.R., Maloy, S.A., Misra, A. & Nastasi, M.A. (2012). On the structure and chemistry of complex oxide nanofeatures in nanostructured ferritic alloy U14YWT. Philos Mag 92(16), 20892107.Google Scholar
Bradley, C.R. & Zaluzec, N.J. (1989). Atomic sputtering in the analytical electron-microscope. Ultramicroscopy 28(1–4), 335338.CrossRefGoogle Scholar
Brandes, M.C., Kovarik, L., Miller, M.K., Daehn, G.S. & Mills, M.J. (2011). Creep behavior and deformation mechanisms in a nanocluster strengthened ferritic steel. Acta Mater 50, 18271839.Google Scholar
Brandes, M.C., Kovarik, L., Miller, M.K. & Mills, M.J. (2012). Morphology, structure, and chemistry of nanoclusters in a mechanically alloyed nanostructured ferritic steel. J Mater Sci 47(8), 39133923.Google Scholar
Brimhall, J.L. & Mastel, B. (1969). Stability of voids in neutron irradiated nickel. J Nucl Mater 33(2), 186194.Google Scholar
Certain, A., Kuchibhatla, S., Shutthanandan, V., Hoelzer, D.T. & Allen, T.R. (2012). Radiation stability of nanoclusters in nano-structured oxide dispersion strengthened (ODS) steels. J Nucl Mater 434(1–3), 311321.CrossRefGoogle Scholar
Certain, A.G., Field, K.G., Allen, T.R., Miller, M.K., Bentley, J. & Busby, J.T. (2010). Response of nanoclusters in a 9Cr ODS steel to 1 dpa, 525 degrees C proton irradiation. J Nucl Mater 407(1), 29.CrossRefGoogle Scholar
Colliex, C., Craven, A.J. & Wilson, C.J. (1977). Fresnel fringes in STEM. Ultramicroscopy 2(4), 327335.Google Scholar
Dai, Y., Odette, G.R. & Yamamoto, T. (2012). The effects of helium in irradiated structural alloys. In Comprehensive Nuclear Materials, Konings, R.J.M. (Ed.), pp. 141193. Oxford: Elsevier.Google Scholar
David, M.L., Pailloux, F., Mauchamp, V. & Pizzagalli, L. (2011). In situ probing of helium desorption from individual nanobubbles under electron irradiation. Appl Phys Lett 98(17), Article no. 171903.CrossRefGoogle Scholar
Donnelly, S.E. (1985). The density and pressure of helium bubbles in implanted metals: A critical review. Radiat Eff Defect Solids 90, 147.CrossRefGoogle Scholar
Duffy, D.M. (2009). Modeling plasma facing materials for fusion power. Mater Today 12(11), 3844.Google Scholar
Edington, J.W. (1976). Practical Electron Microscopy in Materials Science. Herndon: Techbooks.Google Scholar
Edmondson, P.D., Parish, C.M. & Miller, M.K. (2014). Thermal stability of nanoscale helium bubbles in a 14YWT nanostructured ferritic alloy. J Nucl Mater 445, 8490.Google Scholar
Edmondson, P.D., Parish, C.M., Zhang, Y., Hallén, A. & Miller, M.K. (2011). Helium entrapment in a nanostructured ferritic alloy. Scripta Mater 65(8), 731734.Google Scholar
Edmondson, P.D., Parish, C.M., Zhang, Y., Hallén, A. & Miller, M.K. (2013). Helium bubble distributions in a nanostructured ferritic alloy. J Nucl Mater 434(1–3), 210216.CrossRefGoogle Scholar
Egerton, R.F. (2013). Control of radiation damage in the TEM. Ultramicroscopy 127, 100108.CrossRefGoogle ScholarPubMed
Egerton, R.F., McLeod, R., Wang, F. & Malac, M. (2010). Basic questions related to electron-induced sputtering in the TEM. Ultramicroscopy 110(8), 991997.Google Scholar
Egerton, R.F., Wang, F. & Crozier, P.A. (2006). Beam-induced damage to thin specimens in an intense electron probe. Microsc Microanal 12(1), 6571.Google Scholar
Evans, J.H., Vanveen, A. & Caspers, L.M. (1981). Formation of helium platelets in molybdenum. Nature 291(5813), 310312.Google Scholar
Frechard, S., Walls, M., Kociak, M., Chevalier, J.P., Henry, J. & Gorse, D. (2009). Study by EELS of helium bubbles in a martensitic steel. J Nucl Mater 393, 102107.CrossRefGoogle Scholar
Fu, C.L., Krcmar, M., Painter, G.S. & Chen, X.Q. (2007). Vacancy mechanism of high oxygen solubility and nucleation of stable oxygen-enriched clusters in Fe. Phys Rev Lett 99, 22.CrossRefGoogle ScholarPubMed
Greenwood, G.W., Foreman, A.J.E. & Rimmer, D.E. (1959). The role of vacancies and dislocations in the nucleation and growth of gas bubbles in irradiated fissile material. J Nucl Mater 1(4), 305324.Google Scholar
Grogger, W., Varela, M., Ristau, R., Schaffer, B., Hofer, F. & Krishnan, K.M. (2005). Energy-filtering transmission electron microscopy on the nanometer length scale. J Electron Spectrosc Relate Phenom 143(2–3), 139147.Google Scholar
Guerin, Y., Was, G.S. & Zinkle, S.J. (2009). Materials challenges for advanced nuclear energy systems. MRS Bull 34(1), 1014.Google Scholar
Hirata, A., Fujita, T., Liu, C.T. & Chen, M.W. (2012). Characterization of oxide nanoprecipitates in an oxide dispersion strengthened 14YWT steel using aberration-corrected STEM. Acta Mater 60(16), 56865696.Google Scholar
Hirata, A., Fujita, T., Wen, Y.R., Schneibel, J.H., Liu, C.T. & Chen, M.W. (2011). Atomic structure of nanoclusters in oxide-dispersion-strengthened steels. Nat Mater 10(12), 922926.CrossRefGoogle ScholarPubMed
Hobbs, L.W. (1979). Radiation effects in analysis of inorganic specimens by TEM. In Introduction to Analytical Electron Microscopy, Hren, J.J., Goldstein, J.I. & Joy, D.C. (Eds.), pp. 437480. New York: Plenum.Google Scholar
Hofer, F., Warbichler, P., Kronberger, H. & Zweck, J. (2001). Mapping the chemistry in nanostructured materials by energy-filtering transmission electron microscopy (EFTEM). Spectrochim Acta 57(10), 20612069.CrossRefGoogle ScholarPubMed
Howitt, D.G. (1986). Radiation effects encountered by inorganic materials in analytical electron microscopy. In Principles of Analytical Electron Microscopy, Joy D.C., Romig A.D. & Goldstein J.I. (Eds.), pp. 375392. New York: Plenum.Google Scholar
Hsiung, L.L. (2013). HRTEM study of irradiation-induced cavities in oxide-dispersed ferritic steel. Metall Mater Trans A 44A(10), 44964504.Google Scholar
Hsiung, L.L., Fluss, M.J., Tumey, S.J., Choi, B.W., Serruys, Y., Willaime, F. & Kimura, A. (2010). Formation mechanism and the role of nanoparticles in Fe-Cr ODS steels developed for radiation tolerance. Phys Rev B 82, 18.Google Scholar
ASTM International. (2009). ASTM E521, Standard Practice for Neutron Radiation Damage Simulation by Charged-Particle Irradiation. West Conshohocken, PA: ASTM International.Google Scholar
Jenkins, M.L. (1994). Characterization of radiation-damage microstructures by TEM. J Nucl Mater 216, 124156.Google Scholar
Jenkins, M.L. & Kirk, M.A. (2001). Characterization of Radiation Damage by Transmission Electron Microscopy. Bristol: Institute of Physics.Google Scholar
Johnson, E., Kynde, E. & Chadderton, L.T. (1979). Contrast in transmission electron-micrographs of void arrays in crystals. J Microsc 116, 1523.Google Scholar
Joy, D.C., Maher, D.M. & Cullis, A.G. (1976). Nature of defocus fringes in scanning transmission electron micrsocope images. J Microsc 108, 185193.CrossRefGoogle Scholar
Katoh, Y., Stoller, R.E., Kohno, Y. & Kohyama, A. (1992). Modeling the effects of damage rate and He/dpa ratio on microstructural evolution. J Nucl Mater 191, 11441149.Google Scholar
Katoh, Y., Stoller, R.E., Kohno, Y. & Kohyama, A. (1994). The influence of the He/dpa ratio and displacement rate on microstructural evolution—a comparison of theory and experiment. J Nucl Mater 210(3), 290302.Google Scholar
Keenan, M.R. (2009). Exploiting spatial-domain simplicity in spectral image analysis. Surf Interface Anal 41, 7987.Google Scholar
Keenan, M.R. & Kotula, P.G. (2003). Apparatus and system for multivariate spectral analysis. US Patent number 6,584,413.Google Scholar
Keenan, M.R. & Kotula, P.G. (2004 a). Accounting for Poisson noise in the multivariate analysis of TOF-SIMS spectrum images. Surf Interface Anal 36(3), 203212.Google Scholar
Keenan, M.R. & Kotula, P.G. (2004 b). Method of multivariate spectral analysis. US Patent # 6,675,106.Google Scholar
Keenan, M.R. & Kotula, P.G. (2004 c). Optimal scaling of TOF-SIMS spectrum-images prior to multivariate statistical analysis. Appl Surf Sci 231–232, 240244.Google Scholar
Kiritani, M. (1964). Formation of voids+dislocation loops in quenched aluminum. J Phys Soc Jpn 19(5), 618631.Google Scholar
Kiritani, M. (1991). History, present status and future of the contribution of high-voltage electron-microscopy to the study of radiation-damage and defects in solids. Ultramicroscopy 39(1–4), 135159.Google Scholar
Kiritani, M. (1994). Microstructure evolution during irradiation. J Nucl Mater 216, 220264.Google Scholar
Klenov, D., Freitag, B., von Harrach, H.S., D’Alfonso, A.J. & Allen, L.J. (2011). Chemical mapping at the atomic level using energy dispersive X-ray spectroscopy. Microsc Microanal 17(Suppl 2), 598599.Google Scholar
Klueh, R.K. & Harries, D.R. (2001). High-chromium ferritic and martensitic steels for nuclear applications. West Conshohocken: ASTM.Google Scholar
Klueh, R.L., Maziasz, P.J., Kim, I.S., Heatherly, L., Hoelzer, D.T., Hashimoto, N., Kenik, E.A. & Miyahara, K. (2002). Tensile and creep properties of an oxide dispersion-strengthened ferritic steel. J Nucl Mater 307–311, 773777.Google Scholar
Klueh, R.L., Shingledecker, J.P., Swindeman, R.W. & Hoelzer, D.T. (2005). Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys. J Nucl Mater 341(2–3), 103114.Google Scholar
Kotula, P.G. & Keenan, M.R. (2006). Application of multivariate statistical analysis to STEM X-ray spectral images: Interfacial analysis in microelectronics. Microsc Microanal 12(6), 538544.Google Scholar
Kotula, P.G., Keenan, M.R. & Michael, J.R. (2003). Automated analysis of SEM X-ray spectral images: A powerful new microanalysis tool. Microsc Microanal 9(1), 117.Google Scholar
Kotula, P.G., Klenov, D.O. & von Harrach, H.S. (2012). Challenges to quantitative multivariate statistical analysis of atomic-resolution X-ray spectral. Microsc Microanal 18(4), 691698.Google Scholar
Krumeich, F., Müller, E. & Wepf, R.A. (2013). Phase-contrast imaging in aberration-corrected scanning transmission electron microscopy. Micron 49, 114.CrossRefGoogle ScholarPubMed
Li, Q., Parish, C.M., Powers, K.A. & Miller, M.K. (2014). Helium solubility and bubble formation in a nanostructured ferritic alloy. J Nuc Mater 445, 165174.Google Scholar
Loretto, M.H. & Smallman, R.E. (1975). Defect Analysis in Electron Microscopy. London: Halsted.Google Scholar
Maher, D.M. & Joy, D.C. (1976). Formation and interpretation of defect images from crystalline materials in a scanning transmission electron microscope. Ultramicroscopy 1(3), 239253.Google Scholar
Malis, T., Cheng, S.C. & Egerton, R.F. (1988). EELS log-ratio technique for specimen-thickness measurement in the TEM. J Electron Microsc Tech 8, 193200.Google Scholar
Maury, F., Biget, M., Vajda, P., Lucasson, A. & Lucasson, P. (1976). Anisotropy of defect creation in electron-irradiated iron crystals. Phys Rev B 14(12), 53035313.CrossRefGoogle Scholar
McClintock, D.A., Hoelzer, D.T., Sokolov, M.A. & Nanstad, R.K. (2009 a). Mechanical properties of neutron irradiated nanostructured ferritic alloy 14YWT. J Nucl Mater 386, 307311.CrossRefGoogle Scholar
McClintock, D.A., Sokolov, M.A., Hoelzer, D.T. & Nanstad, R.K. (2009 b). Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT. J Nucl Mater 392(2), 353359.Google Scholar
Michael, J.R., Plimpton, S.J. & Romig, A.D. (1993). Parallel simulation of electron-solid interactions—a rapid aid for electron-microscope data interpretation. Ultramicroscopy 51(1–4), 160167.Google Scholar
Michael, J.R., Williams, D.B., Klein, C.F. & Ayer, R. (1990). The measurement and calculation of X-ray spatial resolution obtained in the analytical electorn microscope. J Microsc 160(1), 4153.Google Scholar
Miller, M.K., Fu, C.L., Krcmar, M., Hoelzer, D.T. & Liu, C.T. (2009). Vacancies as a constitutive element for the design of nanocluster-strengthened ferritic steels. Front Mater Sci 3(1), 914.Google Scholar
Miller, M.K., Hoelzer, D. & Russell, K.F. (2010). Towards radiation tolerant nanostructured ferritic alloys. Mater Sci Forum 654–656, 2328.Google Scholar
Miller, M.K., Hoelzer, D.T., Kenik, E.A. & Russell, K.F. (2004). Nanometer scale precipitation in ferritic MA/ODS alloy MA957. J Nucl Mater 329, 338341.Google Scholar
Miller, M.K., Hoelzer, D.T., Kenik, E.A. & Russell, K.F. (2005). Stability of ferritic MA/ODS alloys at high temperatures. Intermetallics 13(3–4), 387392.Google Scholar
Miller, M.K., Kenik, E.A., Russell, K.F., Heatherly, L., Hoelzer, D.T. & Maziasz, P.J. (2003). Atom probe tomography of nanoscale particles in ODS ferritic alloys. Mater Sci Eng 353(1–2), 140145.Google Scholar
Miller, M.K. & Parish, C.M. (2011). Role of alloying elements in nanostructured ferritic steels. Mater Sci Technol 27(4), 729734.CrossRefGoogle Scholar
Miller, M.K., Parish, C.M. & Li, Q. (2013). Advanced oxide dispersion strengthened and nanostructured ferritic alloys. Mater Sci Technol 29(10), 11741178.Google Scholar
Miller, M.K., Russell, K.F. & Hoelzer, D.T. (2006). Characterization of precipitates in MA/ODS ferritic alloys. J Nuc Mater 351(1–3), 261268.CrossRefGoogle Scholar
Odette, G.R., Alinger, M.J. & Wirth, B.D. (2008). Recent developments in irradiation-resistant steels. Ann Rev Mater Res 38, 471503.Google Scholar
Odette, G.R., Cunningham, N.J., Yu, Y., Etienne, A., Haney, E. & Yamamoto, T. (2010). Multiple technique characterization of a nanostructured ferritic alloy: Heat-to-heat, long term high temperature thermal aging and friction stir welding effects on nano-scale dispersion strengthening features. Microsc Microanal 16(Suppl 2), 16001601.Google Scholar
Odette, G.R. & Hoelzer, D.T. (2010). Irradiation-tolerant nanostructured ferritic alloys: Transforming helium from a liability to an asset. J Minerals, Metal Mater Soc 62(9), 8492.CrossRefGoogle Scholar
Parish, C.M. (2011). Multivariate statistics applications in scanning transmission electron microscopy X-ray spectrum imaging. Adv Imag Electron Phys 168, 249295.Google Scholar
Parish, C.M. & Brewer, L.N. (2010 a). Key parameters affecting quantitative analysis of STEM-EDS spectrum images. Microsc Microanal 16(3), 259272.Google Scholar
Parish, C.M. & Brewer, L.N. (2010 b). Multivariate statistics-based segmentation methods for quantification of X-ray spectrum images. Ultramicroscopy 110(2), 134143.Google Scholar
Parish, C.M., Edmondson, P.D., Zhang, Y. & Miller, M.K. (2011). Direct observation of ion-irradiation-induced chemical mixing. J Nucl Mater 418, 106109.Google Scholar
Parish, C.M., White, R.M., LeBeau, J.M. & Miller, M.K. (2014). Response of nanostructured ferritic alloys to high-dose heavy ion irradiation. J Nucl Mater 445(1–3), 251260.Google Scholar
Phillips, P.J., Brandes, M.C., Mills, M.J. & De Graef, M. (2011). Diffraction contrast STEM of dislocations: Imaging and simulations. Ultramicroscopy 111(9–10), 14831487.Google Scholar
Pugh, S.F. (1961). Swelling in alpha-uranium due to irradiation. J Nucl Mater 4(2), 177199.Google Scholar
Ruedl, E., Gautsch, O. & Staroste, E. (1976). Transmission electron-microscopy of He-bubbles in aluminum. J Nucl Mater 62(1), 6372.Google Scholar
Schlossmacher, P., Klenov, D.O., Freitag, B. & von Harrach, H.S. (2010). Enhanced detection sensitivity with a new windowless XEDS system for AEM based on silicon drift detector technology. Microsc Today 2010, 1420.Google Scholar
Smentkowski, V.S., Ostrowski, S.G. & Keenan, M.R. (2009). A comparison of multivariate statistical analysis protocols for TOF-SIMS spectral images. Surf Interface Anal 41, 8896.Google Scholar
Stobbs, W.M. (1979). Electron microscopical techniques for the observation of cavities. J Microsc 116, 313.Google Scholar
Stoller, R.E., Toloczko, M.B., Was, G.S., Certain, A.G., Dwaraknath, S. & Garner, F.A. (2013). On the use of SRIM for computing radiation damage exposure. Nucl Instrum Meth B 310, 7580.Google Scholar
Taverna, D., Kociak, M., Stephan, O., Fabre, A., Finot, E., Decamps, B. & Colliex, C. (2008). Probing physical properties of confined fluids within individual nanobubbles. Phys Rev Lett 100(3), 035301.CrossRefGoogle ScholarPubMed
Thomas, G.J. (1983). Experimental studies of helium in metals. Radiat Eff Defect Solids 78(1-4), 3751.Google Scholar
Trinkaus, H. & Singh, B.N. (2003). Helium accumulation in metals during irradiation—where do we stand? J Nucl Mater 323(2–3), 229242.Google Scholar
von Harrach, H.S., Klenov, D.O., Freitag, B., Schlossmacher, P., Collins, P.C. & Fraser, H.L. (2010). Comparison of the detection limits of EDS and EELS in S/TEM. Microsc Microanal 16(Suppl 2), 13121313.Google Scholar
Walsh, C.A., Yuan, J. & Brown, L.M. (2000). A procedure for measuring the helium density and pressure in nanometre-sized bubbles in irradiated materials using electron-energy-loss spectroscopy. Philos Mag 80(7), 15071543.Google Scholar
Wang, X.L., Liu, C.T., Keiderling, U., Stoica, A.D., Yang, L., Miller, M.K., Fu, C.L., Ma, D. & An, K. (2012). Unusual thermal stability of nano-structured ferritic alloys. J Alloys Compd 529, 96101.Google Scholar
Watanabe, M., Okunishi, E. & Ishizuka, K. (2009). Analysis of spectrum-imaging datasets in atomic-resolution electron microscopy. Microsc Anal 23(7), 57.Google Scholar
Williams, D.B. & Carter, C.B. (2009). Transmission Electron Microscopy, 2nd ed New York: Springer.Google Scholar
Williams, D.B., Michael, J.R., Goldstein, J.I. & Romig, A.D. (1992). Definition of the spatial-resolution of X-ray microanalysis in thin foils. Ultramicroscopy 47(1–3), 121132.Google Scholar
Wolfer, W.G. (2012). Fundamental properties of defects in metals. In Comprehensive Nuclear Materials, Konings R.J.M. (Ed.), pp. 145. Oxford: Elsevier.Google Scholar
Yao, B., Edwards, D.J., Kurtz, R.J., Odette, G.R. & Yamamoto, T. (2012). Multislice simulation of transmission electron microscopy imaging of helium bubbles in Fe. J Electron Microsc 61(6), 393400.Google Scholar
Zinkle, S.J. & Busby, J.T. (2009). Structural materials for fission & fusion energy. Mater Today 12(11), 1219.Google Scholar
Zinkle, S.J. & Ghoniem, N.M. (2000). Operating temperature windows for fusion reactor structural materials. Fusion Eng Des 51–52, 5571.Google Scholar
Zinkle, S.J. & Was, G.S. (2013). Materials challenges in nuclear energy. Acta Mater 61(3), 735758.Google Scholar
Supplementary material: PDF

Parish and Miller Supplementary Material

Figures

Download Parish and Miller Supplementary Material(PDF)
PDF 8.4 MB