Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T15:23:21.807Z Has data issue: false hasContentIssue false

A Proposal for Improved Helium Microscopy

Published online by Cambridge University Press:  11 April 2014

Frederick W. Martin*
Affiliation:
Nanobeam Corporation, 50 Village Avenue, Dedham, MA 02026, USA
*
*Corresponding author. [email protected]
Get access

Abstract

Elimination of the electrostatic objective lens and alternative use of a Cc- and Cs-corrected quadrupole doublet may increase the useful working distance of the helium microscope, improve its resolution from 3 to 0.3 Å, and improve its optimum convergence angle from 0.4 to 4 mrad.

Type
Instrumentation and Techniques Development
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bastian, B., Spengler, K. & Typke, D. (1971). Ein elektrisch-magnetisches Octopol-Element zur sphärischen und chromatischen Korrector von Elektronenlinsen. Optik 33, 591596.Google Scholar
Bell, D.C., Thomas, W.K., Murtaugh, K.M., Dionne, C.A., Graham, A.C., Anderson, J.E. & Glover, W.R. (2012). DNA base identification by electron microscopy. Microsc Microanal 18(5), 10491053.CrossRefGoogle ScholarPubMed
Chen, X., Udalagama, C.N.B., Chen, C.-B., Bettiol, A.A., Pickard, D.S., Venkatesan, T. & Watt, F. (2011). Whole-cell imaging at nanometer resolutions using fast and slow focused helium ions. Biophys J 101, 17881793.CrossRefGoogle ScholarPubMed
Crewe, A.V., Eggenberger, D.N., Welter, L.M. & Wall, J. (1967). Experiments with quadrupole lenses in a scanning microscope. J Appl Phys 38, 42574266.CrossRefGoogle Scholar
Economu, N.P., Notte, J.A. & Thompson, W.B. (2012). The history and development of the helium ion microscope. Scanning 34, 8389.CrossRefGoogle Scholar
Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B. & Urban, K. (1998). A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 5360.CrossRefGoogle Scholar
Hill, R., Notte, J.A. & Scipioni, L. (2012). Scanning helium ion microscopy. In Advances in Imaging and Electron Physics, Hawkes P.W. (Ed.), pp. 77ff. Amsterdam: Elsevier.Google Scholar
Hill, S.B. & McClelland, J.J. (2003). Atoms on demand: A fast, deterministic source of single Cr atoms. Appl Phys Lett B2(18), 31283130.CrossRefGoogle Scholar
Kelman, J.M. & Yavor, S.Y (1962). Achromatic quadrupole electron lenses. Soviet Phys Tech Phys 6, 10521054.Google Scholar
Knuffman, B., Steele, A.V. & McClelland, J.J. (2013). Cold atomic beam ion source for focused ion beam applications. J Appl Phys 114, 044303-1-7.CrossRefGoogle Scholar
Krivanek, O.L., Dellby, N. & Lupini, A.R. (2003). Auto adjusting charged-particle probe-forming apparatus. US Patent 6,552,340 B1.Google Scholar
Martin, F.W. (2012). A large-aperture ion-beam lens corrected for both chromatic and spherical aberration. Abstracts Archive for the International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication (EIPBN12), poster P07-08. Available at http:// eipbn.omnibooksonline.com (retrieved 2013-06-03).Google Scholar
Martin, F.W. (2013 a). Particle-beam column corrected for both chromatic and spherical aberration. US Patent application 13,849496, laid open October 10, 2013.Google Scholar
Martin, F.W. (2013 b). Second and third order aperture aberrations of the compensated quadrupole doublet. Microsc Microanal 19(Suppl 2), 388389.CrossRefGoogle Scholar
Martin, F.W. (2013 c). On achromatic probe-forming lenses for FIB columns and helium microscopes. Microsc Microanal 19(Suppl 2), 11941195.CrossRefGoogle Scholar
Martin, F.W. (2014). Cc, Cs and parasitic correction in quadrupole probe-forming lenses. Optik 125, 13111315.CrossRefGoogle Scholar
Martin, F.W. & Goloskie, R. (1995). Experimental compensation of parasitic octopole aberrations in small-bore quadrupole lenses. Nucl Instr Meth Phys Res B104, 5963.CrossRefGoogle Scholar
Martin, F.W. & Goloskie, R. (1998). Simultaneous compensation of 2nd-order parasitic aberrations in both principal sections of an achromatic quadrupole lens doublet. Nucl Instr Meth Phys Res B30, 242247.Google Scholar
Pla, J.J., Tan, K.Y., Dehollan, J.P., Lim, W.H., Morton, J.J., Jamieson, D.N., Dzurak, A.S. & Morello, A. (2012). A single-atom electron qubit in silicon. Nature 489, 541545.CrossRefGoogle ScholarPubMed
Rose, H. (1966). Allgemeine Abblildungseigenschaften unrunder Elektronenlinsen mit gerader Achse. Optik 24, 3659.Google Scholar
Rose, H. (1967). Uber den spharischen und den chromatischen Fehler unrunder Elektronenlinsen. Optik 25, 587597.Google Scholar
Rose, H. (1971). Abbildungseigenschaften sphärisch korrigierter electronenoptischer Achromate. Optik 33, 124.Google Scholar
Rudd, M.E., Goffe, T.V., Itoh, A. & DuBois, R.D. (1985). Cross sections for ionization of gases by 10-2000 KeV He+ ions and for electron capture and loss by 5-350-keV He+ ions. Phys Rev A32, 829835.CrossRefGoogle Scholar
Scherzer, O. (1947). Spharische und chromatische Korrectur von Electronen-Linsen. Optik 2, 114132.Google Scholar
Uno, S., Honda, K., Nakamura, N. & Matsuya, M. (2005). Aberration correction and its automatic control in scanning electron microscopes. Optik 116, 438448.CrossRefGoogle Scholar
Ward, B.W., Notte, J.A. & Economu, N.P. (2006). Helium ion microscope: A new tool for nanoscale microscopy and metrology. [unpublished abstract, EIPBN06 conference, no online archive].Google Scholar
Watt, F., Chen, C.N.B., van Kan, J.A. & Bettiol, A.A. (2013). Whole cell structural imaging at 20 nanometre resolutions using MeV ions. Nucl Instr Meth Phys Res B306, 611.CrossRefGoogle Scholar
Zach, J. (2003). Method for detecting geometrical-optical aberrations. US Patent 20030001102.Google Scholar
Zach, J. & Haider, M. (1995). Aberration correction in a low voltage SEM by a multipole corrector. Nucl Instr Meth Phys Res A363, 316325.CrossRefGoogle Scholar