Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T15:38:44.390Z Has data issue: false hasContentIssue false

Sectioning of Individual Hematite Pseudocubes with Focused Ion Beam Enables Quantitative Structural Characterization at Nanometer Length Scales

Published online by Cambridge University Press:  19 February 2014

Emily Asenath-Smith
Affiliation:
Materials Science and Engineering, Cornell University, 214 Bard Hall, Ithaca, NY 14853, USA
Lara A. Estroff*
Affiliation:
Materials Science and Engineering, Cornell University, 214 Bard Hall, Ithaca, NY 14853, USA
*
*Corresponding author. [email protected]
Get access

Abstract

A dual-beam focused ion beam microscope equipped with a nanomanipulator was used to fabricate slices from within individual hematite (α-Fe2O3) pseudocubes with selected orientations with respect to the original pseudocubes. Transmission electron microanalysis through selected area electron diffraction enabled assignment of each thin section to a particular zone of the hematite lattice. While the pseudocubes are composed of numerous crystallites, 25–50 nm in size, they are not simply polycrystalline particles. Electron diffraction of thin sections showed that while the pseudocubic hematite particles are composed of numerous coherent domains, the individual thin sections display a net crystallographic orientation to the underlying hematite lattice. Quantitative analysis of the lattice misorientation between coherent domains was calculated from the azimuthal spread of electron diffraction peaks and is consistent with a structure that contains small-angle grain boundaries. Based upon this analysis, we conclude that the pseudocubic hematite particles are mosaic crystals, composed of highly oriented coherent domains.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, T.P., Fay, M.W., Zhu, Y.Q. & Brown, P.D. (2012). In situ TEM investigation of beta-FeOOH and alpha-Fe2O3 nanorods. Physica E 44(6), 10581061.Google Scholar
Bailey, J.K., Brinker, C.J. & Mecartney, M.L. (1993). Growth mechanisms of iron oxide particles of differing morphologies from the forced hydrolysis of ferric chloride solutions. J Colloid Interface Sci 157(1), 113.Google Scholar
Baluffi, R.W., Allen, S.M. & Carter, W.C. (2005). Kinetics of Materials . Hoboken, NJ, USA: John Wiley & Sons.Google Scholar
Barabash, R.I. & Klimanek, P. (1999). X-ray scattering by crystals with local lattice rotation fields. J Appl Crystallogr 32, 10501059.Google Scholar
Blesa, M.A. & Matijevic, E. (1989). Phase-transformations of iron-oxides, oxohydroxides, and hydrous oxides in aqueous-media. Adv Colloid Interface Sci 29(3–4), 173221.Google Scholar
Bragg, W.L., Darwin, C.G. & James, R.W. (1926). The intensity of reflexion of X-rays by crystals. Philos Mag 1, 897923.Google Scholar
Butler, G. & Ison, H.C.K. (1965). Thermal transformation of hydrated ferric oxides. Chem Commun 12, 264265.Google Scholar
Choi, P.P., Al-Kassab, T., Kwon, Y.S., Kim, J.S. & Kirchheim, R. (2007 a). Application of focused ion beam to atom probe tomography specimen preparation from mechanically alloyed powders. Microsc Microanal 13(5), 347353.Google Scholar
Choi, P.P., Kwon, Y.S., Kim, J.S. & Al-Kassab, T. (2007 b). Transmission electron microscopy and atom probe specimen preparation from mechanically alloyed powder using the focused ion-beam lift-out technique. J Electron Microsc 56(2), 4349.Google Scholar
Cornell, R.M. & Schwertmann, U. (2003). Solubility. In The Iron Oxides, pp. 201220. Weinheim, Germany: Wiley-VCH.Google Scholar
Cullity, B.D. & Stock, S.R. (2001). Elements of X-Ray Diffraction. New Jersey: Prentice Hall.Google Scholar
Darwin, C.G. (1914). The theory of X-ray reflexion. Philos Mag 27, 315333.Google Scholar
Darwin, C.G. (1922). The reflexion of X-rays from imperfect crystals. Philos Mag 43(257), 800829.Google Scholar
Fang, X.-L., Chen, C., Jin, M.-S., Kuang, Q., Xie, Z.-X., Xie, S.-Y., Huang, R.-B. & Zheng, L.-S. (2009). Single-crystal-like hematite colloidal nanocrystal clusters: Synthesis and applications in gas sensors, photocatalysis and water treatment. J Mater Chem 19(34), 61546160.Google Scholar
Felfer, P., Ringer, S.P. & Cairney, J.M. (2011). Shaping the lens of the atom probe: Fabrication of site specific, oriented specimens and application to grain boundary analysis. Ultramicroscopy 111(6), 435439.Google Scholar
Ferrari, C., Buffagni, E., Marchini, L. & Zappettini, A. (2012). High-resolution X-ray characterization of mosaic crystals for hard X-ray astronomy. Opt Eng 51(4), (046502-1)(046502-5).Google Scholar
Flynn, C.M. (1984). Hydrolysis of inorganic iron(III) salts. Chem Rev 84(1), 3141.Google Scholar
Franking, R., Li, L., Lukowski, M.A., Meng, F., Tan, Y., Hamers, R.J. & Jin, S. (2013). Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation. Energ Environ Sci 6(2), 500512.Google Scholar
Guinier, A. (1956). X-Ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies. New York: Dover Publications.Google Scholar
Hirth, J.P. (1985). A brief history of dislocation theory. Metall Trans A 16A, 20852090.Google Scholar
Kandori, K., Kawashima, Y. & Ishikawa, T. (1991). Characterization of monodispersed hematite particles by gas-adsorption and fourier-transform infrared-spectroscopy. J Chem Soc, Faraday Trans 87(14), 22412246.Google Scholar
Kay, A., Cesar, I. & Gratzel, M. (2006). New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films. J Am Chem Soc 128(49), 1571415721.Google Scholar
Kazuhiko, K. & Mai, W. (2011). Preparation and characterization of pseudocubic hematite particles by utilizing polyethylene amine nonionic surfactants in forced hydrolysis reaction. Colloid Polym Sci 289(9), 981991.Google Scholar
Liu, R., Jiang, Y., Fan, H., Lu, Q., Du, W. & Gao, F. (2012). Metal ions induce growth and magnetism alternation of α-Fe2O3 crystals bound by high-index facets. Chem Eur J 18(29), 89578963.Google Scholar
Liu, X.J., Liu, J.F., Chang, Z., Sun, X.M. & Li, Y.D. (2011). Crystal plane effect of Fe2O3 with various morphologies on Co catalytic oxidation. Catal Commun 12(6), 530534.Google Scholar
Matijevic, E. & Scheiner, P. (1978). Ferric hydrous oxide sols. 3. Preparation of uniform particles by hydrolysis of Fe(III)-chloride, Fe(III)-nitrate, and Fe(III)-perchlorate solutions. J Colloid Interface Sci 63(3), 509524.Google Scholar
Miller, M.K., Russell, K.F., Thompson, K., Alvis, R. & Larson, D.J. (2007). Review of atom probe FIB-based specimen preparation methods. Microsc Microanal 13(6), 428436.Google Scholar
Miller, M.P., Suter, R.M., Lienert, U., Beaudoin, A.J., Fontes, E., Almer, J. & Schuren, J.C. (2012). High-energy needs and capabilities to study multiscale phenomena in crystalline materials. Synchtrotron Radiation News 25(6), 18.Google Scholar
Morales, M.P., Gonzalezcarreno, T. & Serna, C.J. (1992). The formation of alpha-Fe2O3 monodispersed particles in solution. J Mater Res 7(9), 25382545.Google Scholar
Niederberger, M., Krumeich, F., Hegetschweiler, K. & Nesper, R. (2002). An iron polyolate complex as a precursor for the controlled synthesis of monodispersed iron oxide colloids. Chem Mater 14(1), 7882.Google Scholar
Park, G.S., Shindo, D. & Waseda, Y. (1994). High-voltage, high-resolution electron-microscopy on thin-sections of monodispersed pseudocubic hematite particles. J Electron Microsc 43(4), 208212.Google Scholar
Park, G.S., Shindo, D., Waseda, Y. & Sugimoto, T. (1996). Internal structure analysis of monodispersed pseudocubic hematite particles by electron microscopy. J Colloid Interface Sci 177(1), 198207.Google Scholar
Shindo, D., Aita, S., Park, G.S. & Sugimoto, T. (1993). High-voltage high-resolution electron-microscopy on thin-films of monodispersed pseudocubic and peanut-type hematite particles. Mater T Jim 34(12), 12261228.Google Scholar
Shtukenberg, A.G., Punin, Y.O., Gunn, E. & Kahr, B. (2011). Spherulites. Chem Rev 112(3), 18051838.Google Scholar
Sivula, K., Le Formal, F. & Graetzel, M. (2011). Solar water splitting: Progress using hematite (alpha-Fe2O3) photoelectrodes. Chemsuschem 4(4), 432449.Google Scholar
Song, R.-Q. & Cölfen, H. (2010). Mesocrystals—ordered nanoparticle superstructures. Adv Mater 22(12), 13011330.CrossRefGoogle ScholarPubMed
Su, C., Wang, H. & Liu, X. (2011). Controllable fabrication and growth mechanism of hematite cubes. Cryst Res Technol 46(2), 209214.Google Scholar
Sugimoto, T., Muramatsu, A., Sakata, K. & Shindo, D. (1993 a). Characterization of hematite particles of different shapes. J Colloid Interface Sci 158(2), 420428.Google Scholar
Sugimoto, T., Sakata, K. & Muramatsu, A. (1993 b). Formation mechanism of monodisperse pseudocubic alpha-Fe2O3 particles from condensed ferric hydroxide gel. J Colloid Interface Sci 159(2), 372382.Google Scholar
Van, T.K., Cha, H.G., Nguyen, C.K., Kim, S.W., Jung, M.H. & Kang, Y.S. (2012). Nanocystals of hematite with unconventional shape-truncated hexagonal bipyramid and its optical and magnetic properties. Cryst Grow Des 12(2), 862868.Google Scholar
Warusawithana, M.P., Cen, C., Sleasman, C.R., Woicik, J.C., Li, Y.L., Kourkoutis, L.F., Klug, J.A., Li, H., Ryan, P., Wang, L.P., Bedzyk, M., Muller, D.A., Chen, L.Q., Levy, J. & Schlom, D.G. (2009). A ferroelectric oxide made directly on silicon. Science 324(5925), 367370.Google Scholar
Yin, J., Yu, Z., Gao, F., Wang, J., Pang, H. & Lu, Q. (2010). Low-symmetry iron oxide nanocrystals bound by high-index facets. Angew Chem Int Ed 49(36), 63286332.Google Scholar