Suppose that
$f(x)=x^{n}+A(Bx+C)^{m}\in \mathbb{Z}[x]$, with
$n\geq 3$ and
$1\leq m<n$, is irreducible over
$\mathbb{Q}$. By explicitly calculating the discriminant of
$f(x)$, we prove that, when
$\gcd (n,mB)=C=1$, there exist infinitely many values of
$A$ such that the set
$\{1,\unicode[STIX]{x1D703},\unicode[STIX]{x1D703}^{2},\ldots ,\unicode[STIX]{x1D703}^{n-1}\}$ is an integral basis for the ring of integers of
$\mathbb{Q}(\unicode[STIX]{x1D703})$, where
$f(\unicode[STIX]{x1D703})=0$.