Bull. Aust. Math. Soc. 100 (2019), 297–303 doi:10.1017/S0004972719000248

EXTENDABLE TEMPERATURES

NEIL A. [WATSON](https://orcid.org/0000-0002-2633-8929)

(Received 8 November 2018; accepted 15 January 2019; first published online 27 February 2019)

Abstract

Let *E* and *D* be open subsets of \mathbb{R}^{n+1} such that \overline{D} is a compact subset of *E*, and let *v* be a supertemperature on *E*. We call a temperature *u* on *D extendable by v* if there is a supertemperature *w* on *E* such that $w = u$ on *D* and $w = v$ on $E\setminus\overline{D}$. Such a temperature need not be a thermic minorant of *v* on *D*. We show that either there is a unique temperature extendable by v , or there are infinitely many. Examples of temperatures extendable by *v* include the greatest thermic minorant GM_v^D of *v* on *D*, and the Perron– Wiener–Brelot solution of the Dirichlet problem S_v^D on *D* with boundary values the restriction of *v* to ∂*D*. In the case where these two examples are distinct, we give a formula for producing infinitely many more. Clearly GM_v^D is the greatest extendable thermic minorant, but we also prove that there is a least one, which is not necessarily equal to S_v^D .

2010 *Mathematics subject classification*: primary 35K05; secondary 31B05, 31B10, 31B20. *Keywords and phrases*: temperature, supertemperature, thermic minorant.

1. Introduction

Given an open set *E* in \mathbb{R}^{n+1} , a function $u \in C^{2,1}(E)$ that satisfies the standard heat equation on *E* is called a *temperature*. If

$$
W(x,t) = \begin{cases} (4\pi t)^{-n/2} \exp(-|x|^2/4t) & \text{if } t > 0, \\ 0 & \text{if } t \le 0, \end{cases}
$$

then *W* is a temperature on $\mathbb{R}^{n+1} \setminus \{0\}$. For any point $p_0 = (x_0, t_0) \in \mathbb{R}^{n+1}$ and any positive number *c* the set number *c*, the set

$$
\Omega(p_0; c) = \Omega(x_0, t_0; c) = \{(y, s) \in \mathbb{R}^{n+1} : W(x_0 - y, t_0 - s) > (4\pi c)^{-n/2}\}
$$

is called the *heat ball* with *centre* (x_0, t_0) and *radius c*. The heat ball is of increasing
importance and can now be found in several books, including $\begin{bmatrix} 1 & 3 & 4 & 6 \end{bmatrix}$. Temperatures importance and can now be found in several books, including $[1, 3, 4, 6]$ $[1, 3, 4, 6]$ $[1, 3, 4, 6]$ $[1, 3, 4, 6]$ $[1, 3, 4, 6]$ $[1, 3, 4, 6]$ $[1, 3, 4, 6]$. Temperatures can be characterised in terms of mean values over heat balls, in that a function $u \in C^{2,1}(E)$ is a temperature if and only if

$$
u(x_0, t_0) = (4\pi c)^{-n/2} \iint_{\Omega(x_0, t_0; c)} \frac{|x_0 - x|^2}{4(t_0 - t)^2} u(x, t) \, dx \, dt
$$

whenever $\overline{\Omega}(x_0, t_0; c) \subseteq E$.

c 2019 Australian Mathematical Publishing Association Inc.

An extended real-valued function *v* on *E* is called a *supertemperature* on *E* if it satisfies the following four conditions:

- $(δ₁)$ −∞ < *v*(*p*) ≤ +∞ for all *p* ∈ *E*;
- (δ_2) *v* is lower semicontinuous on *E*;
- (δ_3) *w* is finite on a dense subset of *E*:
- (δ_4) given any point (x_0, t_0) $\in E$ and positive number ϵ , there is a positive number *c* < *e* such that the closed heat ball $\overline{\Omega}(x_0, t_0; c) \subseteq E$ and the inequality

$$
v(x_0, t_0) \ge (4\pi c)^{-n/2} \iint_{\Omega(x_0, t_0; c)} \frac{|x_0 - x|^2}{4(t_0 - t)^2} u(x, t) \, dx \, dt
$$

holds.

If ν is a supertemperature on E , D is an open subset of E , and u is a temperature such that $u \leq v$ on *D*, then *u* is called a *thermic minorant* of *v* on *D*.

Given an open set *D* such that \overline{D} is a compact subset of *E*, and a supertemperature *v* on *E*, it is well known that the restriction of *v* to *D* can be replaced by a temperature in such a way that the resultant function, perhaps with some modification on ∂D , is a supertemperature on *E*. We shall study this phenomenon, using the following terminology.

DEFINITION 1.1. Let *E* and *D* be open sets such that \overline{D} is a compact subset of *E*, and let *v* be a supertemperature on *E*. If *u* is a temperature on *D* such that the function *w* defined by

$$
w = \begin{cases} u & \text{on } D, \\ v & \text{on } E \setminus \overline{D}, \end{cases}
$$

can be extended to a supertemperature on *E*, we say that *u* is *extendable by v (to E)*.

Our starting point is a pair of known results. The first is the following corollary of [\[7,](#page-6-3) Theorem 2.5]. In this, a function *^f* on ∂*^D* is called *resolutive* if it has a Perron– Wiener–Brelot solution to the generalised Dirichlet problem, in the sense of [\[6\]](#page-6-2). That solution is denoted by S_f^D . Throughout this paper, our notation and terminology follow $[6]$.

LEMMA 1.2. Let E and D be open sets such that \overline{D} is a compact subset of E, and let v *be a supertemperature on E. Then the restriction of v to* ∂*D is resolutive for D, and the function w defined by*

$$
w = \begin{cases} S_v^D & on D, \\ v & on E \backslash \overline{D}, \end{cases}
$$

can be extended to a supertemperature \overline{w} *majorised by v on E.*

The second result is not quite [\[7,](#page-6-3) Corollary 3.3] but can be proved by an almost identical method.

[3] Extendable temperatures 299

LEMMA 1.3. Let E and D be open sets such that \overline{D} is a compact subset of E, let v be *a* supertemperature on E, and let GM_v^D be the greatest thermic minorant of v on D. *Then the function w defined by*

$$
w = \begin{cases} GM_v^D & on D, \\ v & on E\backslash\overline{D}, \end{cases}
$$

can be extended to a supertemperature \overline{w} *majorised by v on E.*

Thus each of S_v^D and GM_v^D is extendable by *v* to *E*.

We note that the temperature u , in the definition of 'extendable', is not necessarily a thermic minorant of *v* on *D*. For if $S_v^D \neq GM_v^D$ and we use the function \overline{w} of Lemma [1.2](#page-1-0) in place of the original supertemperature *v*, then GM_v^D is extendable by \overline{w} , by Lemma [1.3,](#page-1-1) but is not a thermic minorant of \overline{w} on *D*.

It is known that, for some open subsets *D* such as heat balls, there is only one temperature *u* on *D* that is extendable by a given supertemperature *v*. See [\[5,](#page-6-4) Theorem 6] for details. On the other hand, if there are two distinct temperatures u_1 and u_2 on *D* that are extendable by *v*, then there are infinitely many. This is because, whenever $0 < \alpha < 1$, the temperature αu_1 is extendable by αv , and $(1 - \alpha)u_2$ is extendable by $(1 - \alpha)v$, so that $\alpha u_1 + (1 - \alpha)u_2$ is extendable by $\alpha v + (1 - \alpha)v = v$.

Even if $S_v^D = GM_v^D$, there may still be infinitely many temperatures on *D* that are extendable by *v*, as the following example shows.

EXAMPLE 1.4. We take $E = \mathbb{R}^{n+1}$ and *v* the characteristic function of $\mathbb{R}^n \times]0, \infty[$. Given any hall B in \mathbb{R}^n , we take $D = B \times (1 - 1, 1)$. Then the set $B \times (-1, 1)$ is a null any ball *B* in \mathbb{R}^n , we take $D = B \times (]-1, 1[\cup]1, 2[$. Since the set $B \times \{-1, 1\}$ is a null set for the Riesz measure associated with v [8. Theorem 121 implies that $S^D - G M^D$ set for the Riesz measure associated with *v*, [\[8,](#page-6-5) Theorem 12] implies that $S_v^D = GM_v^D$. By Lemma [1.2,](#page-1-0) the function w_1 defined by

$$
w_1 = \begin{cases} S_v^D & \text{on } D, \\ v & \text{on } E \backslash \overline{D}, \end{cases}
$$

can be extended to a supertemperature on *E*. We now define $D_+ = B \times 11$, 2[and *D*_− = *B* ×] − 1, 1[. Then $S_v^D = S_v^{D_-}$ on *D*_− and $S_v^D = S_v^{D_+}$ on *D*₊. If $C = B \times] - 1, 2[$, then $\overline{C} = \overline{D}$ and the function then $\overline{C} = \overline{D}$ and the function

$$
w_2 = \begin{cases} S_v^C & \text{on } C, \\ v & \text{on } E \setminus \overline{C} = E \setminus \overline{D}, \end{cases}
$$

can be extended to a supertemperature on *E*. Furthermore $S_v^C = S_v^{D_-}$ on D_- , but $S_v^C < S_v^{D_+}$ on D_+ because $S_v^C < 1 = v$ on $B \times \{1\}$. Therefore $w_2 < w_1$ on D_+ . Thus S_v^D and S_v^C are both temperatures on *D* that are extendable by *v*, but they are not equal. Hence there are infinitely many such temperatures.

300 N. A. Watson [4]

2. The least extendable temperature

Example [1.4](#page-2-0) also shows that S_v^D may not be the least temperature on *D* that is extendable by v . However this is because of the choice of v and a different choice can satisfy this equation. There is a smallest supertemperature v_0 on *E* such that $v_0 = v$ on $E\setminus\overline{D}$, and $S_{\nu_0}^D = \nu_0$ on *D*, as we now show.

THEOREM 2.1. Let E and D be open sets such that \overline{D} is a compact subset of E, and let *v be a supertemperature on E. Then the class* F *of all supertemperatures w on E such that* $w = v$ *on* $E \setminus \overline{D}$ *has a minimal element* v_0 *for which* $S_{v_0}^D = v_0$ *on* D .

Proof. If *B* is an open superset of \overline{D} such that \overline{B} is a compact subset of *E*, then *v* has a lower bound *^K* on ∂*B*. Now the minimum principle shows that the restrictions to *^B* of all members of $\mathcal F$ are lower bounded by K. Thus the function $u = \inf \mathcal F$ is locally lower bounded on *E*, so that its lower semicontinuous smoothing \hat{u} is a supertemperature on E which equals u wherever the latter is lower semicontinuous, by [\[6,](#page-6-2) Theorem 7.13]. Therefore $\widehat{u} = v$ on $E\setminus\overline{D}$, so that $\widehat{u} \in \mathcal{F}$ and \mathcal{F} has a minimal element. Applying Lemma [1.2,](#page-1-0) we see that the function w_0 , defined by

$$
w_0 = \begin{cases} S_{\widehat{u}}^D & \text{on } D, \\ \widehat{u} = v & \text{on } E \backslash \overline{D}, \end{cases}
$$

can be extended to a supertemperature majorised by \widehat{u} on *E*. That extension belongs to \mathcal{F} , so that it also majorises \widehat{u} and hence the two are equal. $\mathcal F$, so that it also majorises $\widehat u$ and hence the two are equal.

3. A formula for extendable temperatures

For the case where S_v^D and GM_v^D are distinct, we can give a formula for an infinity of temperatures on *D* that are extendable by *v*. The key to this is $[8,$ Theorem 7(b)], which we state below as Lemma [3.1.](#page-4-0)

We use the following notations. If ν is a nonnegative Borel measure on an open set *E* and *A* is a *v*-measurable set, we denote the restriction of *v* to *A* by v_A . If *D* is an open subset of *E*, we denote the extended Green function of *D* by G_D^{\dagger} (see [\[2,](#page-6-6) [8\]](#page-6-5) for details), and define the function $G_D^=v$ by

$$
G_D^=v(p) = \int_E G_D^=(p;q)\,dv(q)
$$

for all $p \in D$.

We require a classification of the boundary points of *E* in which we use the following notations for upper and lower half-balls. Given any point $p_0 = (x_0, t_0)$ in \mathbb{R}^{n+1} and *r* > 0, we put *H*(*p*₀, *r*) = {(*x*, *t*) : $|x - x_0|^2 + (t - t_0)^2 < r^2$, $t < t_0$ } and
H^{*}(*n*₀, *r*) = {(*x*, *t*) : $|x - x_0|^2 + (t - t_0)^2 < r^2$, $t > t_0$ }. Let *a* be a boundary point of the $H^*(p_0, r) = \{(x, t) : |x - x_0|^2 + (t - t_0)^2 < r^2, t < t_0\}$ and
 $H^*(p_0, r) = \{(x, t) : |x - x_0|^2 + (t - t_0)^2 < r^2, t > t_0\}$. Let *q* be a boundary point of the

bounded open set *D*. In our classification of boundary points, we always suppos bounded open set *D*. In our classification of boundary points, we always suppose that the boundary of *D* does not contain any polar set whose union with *D* would give another open set. We call *q* a *normal* boundary point if every lower half-ball centred at *^q* meets the complement of *^D*. If this condition fails, and also for every *^r* > 0 we have $H^*(q, r) \cap D \neq \emptyset$, then *q* is called a *semisingular* boundary point. The set of all normal houndary points of *D* is denoted by ∂ *D* and that of all semisingular points by ∂ *D*. A boundary points of *D* is denoted by $\partial_n D$ and that of all semisingular points by $\partial_{ss} D$. A similar classification is made relative to the adjoint equation, by interchanging *H* and *H*^{*} throughout. This leads, in particular, to the idea of a point $q \in \partial D$ being a *cothermal* point if every upper half-hall centred at *a* meets the complement of normal boundary point if every upper half-ball centred at *q* meets the complement of *D*; the set of all such points is denoted by $\partial_n^* D$. A point $q \in \partial_n E$ is called *regular* if this if this is called *coregular* if this if $\lim_{p\to q} S_F^E(p) = f(q)$ for all *f* ∈ *C*(∂*E*); a point *q* ∈ ∂_n^{*}*E* is called *coregular* if this holds relative to the adjoint equation. A point *a* = (*x*, *x*) ∈ ∂*F* is called *regular* if holds relative to the adjoint equation. A point $q = (y, s) \in \partial_{ss}E$ is called *regular* if lim_{(*x*,*t*)→(*y*,*s*+) $S_f^E(x, t) = f(y, s)$ for all $f \in C(\partial E)$.}

LEMMA 3.1. Let E and D be open sets such that \overline{D} is a compact subset of E, and *let Y be the complement in ∂D of the set of coregular points of* $\partial_n^* D$ *. Let v be a*
supertemperature on F, and let y be its associated Riesz measure. Then we have *supertemperature on E, and let* ν *be its associated Riesz measure. Then we have* $GM_v^D = S_v^D + G_D^= v_Y \text{ on } D.$

We can now give our formula for temperatures on *D* that are extendable by *v*, which gives an infinity of such functions in the case where $S_v^D \neq GM_v^D$.

THEOREM 3.2. Let E and D be open sets such that \overline{D} is a compact subset of E, and *let Y be the complement in ∂D of the set of coregular points of* $\partial_n^* D$ *. Let v be a*
supertemperature on *F* and let *y* be its associated Riesz measure. If *u* is a measure *supertemperature on E and let* ν *be its associated Riesz measure. If* µ *is a measure on E such that* $0 \leq \mu \leq \nu_Y$ *, then the function w defined on E*\ ∂D *by*

$$
w = \begin{cases} S_v^D + G_D^- \mu & on D, \\ v & on E \backslash \overline{D}, \end{cases}
$$

is a temperature on D and can be extended to a supertemperature majorised by v on E. Moreover,

$$
\lim_{p \to q, \, p \in D} G_D^{-} \mu(p) = 0
$$

whenever q is a regular point of $\partial_n D \backslash \overline{Y}$ *, and*

$$
\lim_{p \to q^+, \, p \in D} G_{D}^{-} \mu(p) = 0
$$

whenever q is a regular point of $\partial_{ss}D\backslash\overline{Y}$.

Proof. To prove the extendability, we first suppose that $v \ge 0$, so that we can write $v = G_E v + G M_V^E$ on *E*. Given a measure μ on *E* such that $0 \le \mu \le \nu_Y$, we put $v = G_E (v - \mu)$ and $v_0 = G_E (u + G M_E^E)$ on *F*. Then v_0 and v_0 are supertemperatures $v_1 = G_E(v - \mu)$ and $v_2 = G_E\mu + GM_v^E$ on *E*. Then v_1 and v_2 are supertemperatures on *E* and $v = v_1 + v_2$. By *B*, Lemma 61, $G^{\pm}u$ is a temperature on *D* because *u* is on *E* and $v = v_1 + v_2$. By [\[8,](#page-6-5) Lemma 6], $G_{D}^{\pm} \mu$ is a temperature on *D* because μ is supported in ∂D . By Lemma 1.2, the function w_1 defined by supported in ∂*D*. By Lemma [1.2,](#page-1-0) the function w_1 defined by

$$
w_1 = \begin{cases} S_{v_1}^D & \text{on } D, \\ v_1 & \text{on } E \backslash \overline{D}, \end{cases}
$$

can be extended to a supertemperature majorised by v_1 on E. Moreover, by Lemma [1.3,](#page-1-1) the function w_2 defined by

$$
w_2 = \begin{cases} GM_{\nu_2}^D & \text{on } D, \\ \nu_2 & \text{on } E \backslash \overline{D}, \end{cases}
$$

can be extended to a supertemperature majorised by v_2 on E . Furthermore, Lemma [3.1](#page-4-0) shows that $GM_{\nu_2}^D = S_{\nu_2}^D + G_{\overline{D}}^2 \mu$ on *D*, so that $w_1 + w_2 = S_{\nu}^D + G_{\overline{D}}^2 \mu = w$ on *D*, and hence $w_1 + w_2 = w$ on $F \setminus \partial D$ It follows that *w* can be extended to a supertemperature $w_1 + w_2 = w$ on $E\setminus \partial D$. It follows that *w* can be extended to a supertemperature majorised by $v_1 + v_2 = v$ on *E*.

In the general case, we choose an open superset *C* of \overline{D} such that \overline{C} is a compact subset of \overline{E} . Then ν is lower bounded on \overline{C} , so that we can apply the case just proved to *v* − *m* on *C*, where $m = \inf_{C} v$, noting that v_C is the Riesz measure associated with *v* − *m* on *C*. Thus, if μ is a measure on *E* such that $0 < \mu \leq \nu_{Y}$, then the function w_{3} defined by

$$
w_3 = \begin{cases} S_{\nu-m}^D + G_{D}^{-} \mu_C & \text{on } D, \\ \nu - m & \text{on } C \backslash \overline{D}, \end{cases}
$$

is a temperature on *D* and can be extended to a supertemperature majorised by $v - m$ on *C*. The addition of *m* to *w*₃ gives the restriction of *w* to *C*\∂*D* and the extendability follows.

To prove the last part, we first put $v_{\mu} = G_E \mu$. Then, by [\[8,](#page-6-5) Theorem 3],

$$
G_{D}^{-}\mu(p) = \int_{E} \left(G_{E}(p;q) - \int_{\partial D} G_{E}(\cdot;q) d\omega_{p}^{D} \right) d\mu(q)
$$

$$
= G_{E}\mu(p) - \int_{\partial D} G_{E}\mu d\omega_{p}^{D}
$$

$$
= v_{\mu}(p) - S_{\nu_{\mu}}^{D}(p)
$$

for all $p \in D$. The function v_u is a temperature on $E\{\overline{Y}\}$, so that it is continuous on ∂*D**Y*. Therefore

$$
\lim_{p\to q, p\in D} S_{\nu_\mu}^D(p) = \nu_\mu(q)
$$

whenever *q* is a regular point of $\partial_n D \backslash \overline{Y}$, and

$$
\lim_{p \to q^+, \, p \in D} S_{\nu_\mu}^D(p) = \nu_\mu(q)
$$

whenever *q* is a regular point of $\partial_{ss}D\backslash\overline{Y}$. The result follows. □

[1] B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knoph, P. Lu, F. Luo and L. Ni, *The Ricci Flow: Techniques and Applications: Part III: Geometric-Analytic Aspects*, Mathematical Surveys and Monographs, 163 (American Mathematical Society, Providence, RI, 2010).

References

[7] Extendable temperatures 303

- [2] J. L. Doob, *Classical Potential Theory and its Probabilistic Counterpart*, Grundlehren der mathematischen Wissenschaften, 262 (Springer, New York, 1984).
- [3] K. Ecker, *Regularity Theory for Mean Curvature Flow*, Progress in Nonlinear Differential Equations and their Applications, 57 (Birkhäuser, Basel, 2004).
- [4] L. C. Evans, *Partial Di*ff*erential Equations*, Graduate Studies in Mathematics, 19 (American Mathematical Society, Providence, RI, 1998).
- [5] N. A. Watson, 'Mean values of subtemperatures over level surfaces of Green functions', *Ark. Mat.* 30 (1992), 165–185.
- [6] N. A. Watson, *Introduction to Heat Potential Theory*, Mathematical Surveys and Monographs, 182 (American Mathematical Society, Providence, RI, 2012).
- [7] N. A. Watson, 'Thermic minorants and reductions of supertemperatures', *J. Aust. Math. Soc.* 99 (2015), 128–144.
- [8] N. A. Watson, 'Extensions of Green functions and the representation of greatest thermic minorants', *New Zealand J. Math.* 47 (2017), 97–110.

NEIL A. [WATSON,](https://orcid.org/0000-0002-2633-8929) School of Mathematics and Statistics, University of Canterbury, Private Bag, Christchurch, New Zealand e-mail: n.watson@math.canterbury.ac.nz

<https://doi.org/10.1017/S0004972719000248>Published online by Cambridge University Press