Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-02-03T02:48:18.533Z Has data issue: false hasContentIssue false

The ins and outs of unpacking the black box: Understanding motivation using a multi-level approach

Published online by Cambridge University Press:  31 January 2025

F. Wurm
Affiliation:
Health, Medical & Neuropsychology, Leiden University, Leiden, The Netherlands [email protected] [email protected] [email protected] https://www.universiteitleiden.nl/en/staffmembers/franz-wurm#tab-1 https://www.universiteitleiden.nl/en/staffmembers/ineke-van-der-ham#tab-1 https://www.universiteitleiden.nl/en/staffmembers/judith-schomaker/publications#tab-1 Leiden Institute for Brain and Cognition, Leiden, The Netherlands
I. J. M. van der Ham
Affiliation:
Health, Medical & Neuropsychology, Leiden University, Leiden, The Netherlands [email protected] [email protected] [email protected] https://www.universiteitleiden.nl/en/staffmembers/franz-wurm#tab-1 https://www.universiteitleiden.nl/en/staffmembers/ineke-van-der-ham#tab-1 https://www.universiteitleiden.nl/en/staffmembers/judith-schomaker/publications#tab-1 Leiden Institute for Brain and Cognition, Leiden, The Netherlands
J. Schomaker*
Affiliation:
Health, Medical & Neuropsychology, Leiden University, Leiden, The Netherlands [email protected] [email protected] [email protected] https://www.universiteitleiden.nl/en/staffmembers/franz-wurm#tab-1 https://www.universiteitleiden.nl/en/staffmembers/ineke-van-der-ham#tab-1 https://www.universiteitleiden.nl/en/staffmembers/judith-schomaker/publications#tab-1 Leiden Institute for Brain and Cognition, Leiden, The Netherlands
*
*Corresponding author.

Abstract

Although higher-level constructs often fail to explain the mechanisms underlying motivation, we argue that purely mechanistic approaches have limitations. Lower-level neural data help us identify “biologically plausible” mechanisms, while higher-level constructs are critical to formulate measurable behavioral outcomes when constructing computational models. Therefore, we propose that a multi-level, multi-measure approach is required to fully unpack the black box of motivated behavior.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bechtel, W., & Richardson, R. C. (2010). Discovering complexity: Decomposition and localization as strategies in scientific research. MIT Press.CrossRefGoogle Scholar
Brielmann, A. A., & Dayan, P. (2022). A computational model of aesthetic value. Psychological Review, 129(6), 13191337. https://doi.org/10.1037/rev0000337CrossRefGoogle ScholarPubMed
Gershman, S. J., & Cikara, M. (2021). Structure learning principles of stereotype change. PsyArXiv, 2(1954), 127. https://psyarxiv.com/52f9c/Google Scholar
Hayden, B. Y., & Niv, Y. (2021). The case against economic values in the orbitofrontal cortex (or anywhere else in the brain). Behavioral Neuroscience, 135(2), 192201. https://doi.org/10.1037/bne0000448CrossRefGoogle ScholarPubMed
Jeong, H., Taylor, A., Floeder, J. R., Lohmann, M., Mihalas, S., Wu, B., … Namboodiri, V. M. K. (2022). Mesolimbic dopamine release conveys causal associations. Science, 378(6626), eabq6740. https://doi.org/10.1126/science.abq6740CrossRefGoogle ScholarPubMed
Love, B. C. (2021). Levels of biological plausibility: Levels. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1815), 02. https://doi.org/10.1098/rstb.2019.0632CrossRefGoogle ScholarPubMed
Marr, D. (1982). Vision: A computational approach. Freeman & Co.Google Scholar
Marr, D. C., & Poggio, T. (1976). From understanding computation to understanding neural circuitry. Massachusetts Institute of Technology, A.I. Memo 357.Google Scholar
Mars, R. B., Shea, N. J., Kolling, N., & Rushworth, M. F. (2012). Model-based analyses: Promises, pitfalls, and example applications to the study of cognitive control. Quarterly Journal of Experimental Psychology, 65(2), 252267. https://doi.org/10.1080/17470211003668272CrossRefGoogle Scholar
Nassar, M. R., & Frank, M. J. (2016). Taming the beast: Extracting generalizable knowledge from computational models of cognition. Current Opinion in Behavioral Sciences, 11, 4954. https://doi.org/10.1016/j.cobeha.2016.04.003CrossRefGoogle ScholarPubMed
Nassar, M. R., & Gold, J. I. (2013). A healthy fear of the unknown: Perspectives on the interpretation of parameter fits from computational models in neuroscience. PLoS Computational Biology, 9(4), 16. https://doi.org/10.1371/journal.pcbi.1003015CrossRefGoogle ScholarPubMed
Niv, Y., & Langdon, A. J. (2016). Reinforcement learning with Marr. Current Opinion in Behavioral Sciences, 11(3), 6773. https://doi.org/10.1016/j.cobeha.2016.04.005CrossRefGoogle ScholarPubMed
Palminteri, S., Wyart, V., & Koechlin, E. (2017). The importance of falsification in computational cognitive modeling. Trends in Cognitive Sciences, 21(6), 425433. https://doi.org/10.1016/j.tics.2017.03.011CrossRefGoogle ScholarPubMed
Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T. L., Cohen, J. D., & Botvinick, M. M. (2017). Toward a rational and mechanistic account of mental effort. Annual Review of Neuroscience, 40(1), 99124. https://doi.org/10.1146/annurev-neuro-072116-031526CrossRefGoogle Scholar
Sun, R. (2009). Theoretical status of computational cognitive modeling. Cognitive Systems Research, 10(2), 124140. https://doi.org/10.1016/j.cogsys.2008.07.002CrossRefGoogle Scholar