Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-02-03T01:03:10.347Z Has data issue: false hasContentIssue false

Almost, but not quite there: Research into the emergence of higher-order motivated behavior should fully embrace the dynamic systems approach

Published online by Cambridge University Press:  31 January 2025

Christophe Gernigon*
Affiliation:
EuroMov Digital Health in Motion, Université de Montpellier, IMT Mines Alès, Montpellier, France [email protected] [email protected] https://www.researchgate.net/profile/Christophe-Gernigon https://fr.linkedin.com/in/r%C3%A9mi-altamore-6788111a8
Rémi Altamore
Affiliation:
EuroMov Digital Health in Motion, Université de Montpellier, IMT Mines Alès, Montpellier, France [email protected] [email protected] https://www.researchgate.net/profile/Christophe-Gernigon https://fr.linkedin.com/in/r%C3%A9mi-altamore-6788111a8
Robin R. Vallacher
Affiliation:
Department of Psychology, Florida Atlantic University, Boca Raton, FL, USA [email protected] https://psy.fau.edu/people/vallacher.php
Paul L. C. van Geert
Affiliation:
Department of Psychology, University of Groningen, TS, Groningen, The Netherlands [email protected] [email protected] https://www.paulvangeert.nl https://www.rug.nl/staff/j.r.den.hartigh
Ruud J. R. Den Hartigh
Affiliation:
Department of Psychology, University of Groningen, TS, Groningen, The Netherlands [email protected] [email protected] https://www.paulvangeert.nl https://www.rug.nl/staff/j.r.den.hartigh
*
*Corresponding author.

Abstract

Murayama and Jach rightfully aim to conceptualize motivation as an emergent property of a dynamic system of interacting elements. However, they do not embrace the ontological and paradigmatic constraints of the dynamic systems approach. They therefore miss the very process of emergence and how it can be formally modeled and tested by specific types of computer simulation.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bechtel, W., & Richardson, R. C. (2010). Discovering complexity: Decomposition and localization as strategies in scientific research. MIT Press.CrossRefGoogle Scholar
Bunge, M. (1977). Emergence and the mind. Neuroscience, 2(4), 501509. https://doi.org/10.1016/0306-4522(77)90047-1CrossRefGoogle ScholarPubMed
Carver, C. S., & Scheier, M. F. (1998). On the self-regulation of behavior. Cambridge University Press.CrossRefGoogle Scholar
Den Hartigh, R. J., Cox, R. F., & van Geert, P. L. (2017). Complex versus complicated models of cognition. In Magnani, L. & Bertolotti, T. (Eds.), Springer handbook of model-based science (pp. 657669). Springer.CrossRefGoogle Scholar
Gernigon, C., Den Hartigh, R. J. R., Vallacher, R. R., & van Geert, P. L. C. (2024). How the complexity of psychological processes reframes the issue of reproducibility in psychological science. Perspectives on Psychological Science, 19(6), 952977. https://doi.org/10.1177/17456916231187324CrossRefGoogle ScholarPubMed
Gernigon, C., Vallacher, R. R., Nowak, A., & Conroy, D. E. C. (2015). Rethinking approach and avoidance in achievement contexts: The perspective of dynamical systems. Review of General Psychology, 19(4), 443457. https://doi.org/10.1037/gpr0000055CrossRefGoogle Scholar
Guastello, S. J., & Liebovitch, L. S. (2009). Introduction to nonlinear dynamics and complexity. In Guastello, S. J., Koopmans, M. & Pincus, D. (Eds.), Chaos and complexity in psychology: The theory of nonlinear dynamical systems (pp. 140). Cambridge University Press.Google Scholar
Hausman, D. M., & Woodward, J. (1999). Independence, invariance and the causal Markov condition. The British Journal for the Philosophy of Science, 50(4), 521583. https://doi.org/10.1093/bjps/50.4.521CrossRefGoogle Scholar
Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior. MIT Press.Google Scholar
López-Pernas, S., & Saqr, M. (2024). How the dynamics of engagement explain the momentum of achievement and the inertia of disengagement: A complex systems theory approach. Computers in Human Behavior, 153, 108126. https://doi.org/10.1016/j.chb.2023.108126CrossRefGoogle Scholar
Nowak, A. (2004). Dynamical minimalism: Why less is more in psychology. Personality and Social Psychology Review, 8(2), 183192. https://doi.org/10.1207/s15327957pspr0802_12CrossRefGoogle ScholarPubMed
Open Science Collaboration (2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716. https://doi.org/10.1126/science.aac4716CrossRefGoogle Scholar
Smaldino, P. E. (2023). Modeling social behavior: Mathematical and agent-based models of social dynamics and cultural evolution. Princeton University Press.Google Scholar
Vallacher, R. R., Read, S. J., & Nowak, A. (Eds.) (2017). Computational social psychology. Routledge/Taylor & Francis.CrossRefGoogle Scholar
van der Maas, H. L. J., Dolan, C. V., Grasman, R. P. P. P., Wicherts, J. M., Huizenga, H. M., & Raijmakers, M. E. J. (2006). A dynamical model of general intelligence: The positive manifold of intelligence by mutualism. Psychological Review, 113(4), 842861. https://doi.org/10.1037/0033-295X.113.4.842CrossRefGoogle ScholarPubMed
van Geert, P., & de Ruiter, N. (Eds.) (2022). Toward a process approach in psychology: Stepping into Heraclitus’ River. Cambridge University Press.CrossRefGoogle Scholar
Van Orden, G. C., Holden, J. G., & Turvey, M. T. (2003). Self-organization of cognitive performance. Journal of Experimental Psychology: General, 132(3), 331350. https://doi.org/10.1037/0096-3445.132.3.331CrossRefGoogle ScholarPubMed
Wallot, S., & Kelty-Stephen, D. G. (2018). Interaction-dominant causation in mind and brain, and its implication for questions of generalization and replication. Minds and Machines, 28(2), 353374. https://doi.org/10.1007/s11023-017-9455-0CrossRefGoogle Scholar