We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present results of frequency tripling experiments performed at the Hilase facility on a cryogenically gas cooled multi-slab ytterbium-doped yttrium aluminum garnet laser system, Bivoj/DiPOLE. The laser produces high-energy ns pulses at 10 Hz repetition rate, which are frequency doubled using a type-I phase-matched lithium triborate (LBO) crystal and consequently frequency summed using a type-II phase-matched LBO crystal. We demonstrated a stable frequency conversion to 343 nm at 50 J energy and 10 Hz repetition rate with conversion efficiency of 53%.
We construct a mean-field model that describes the nonlinear dynamics of a spin-polarized electron gas interacting with fixed, positively charged ions possessing a magnetic moment that evolves in time. The mobile electrons are modelled by a four-component distribution function in the two-dimensional phase space $(x,v)$, obeying a Vlasov–Poisson set of equations. The ions are modelled by a Landau–Lifshitz equation for their spin density, which contains ion–ion and electron–ion magnetic exchange terms. We perform a linear response study of the coupled Vlasov–Poisson–Landau–Lifshitz (VPLL) equations for the case of a Maxwell–Boltzmann equilibrium, focussing in particular on the spin dispersion relation. Conditions of stability or instability for the spin modes are identified, which depend essentially on the electron spin polarization rate $\eta$ and the electron–ion magnetic coupling constant $K$. We also develop an Eulerian grid-based computational code for the fully nonlinear VPLL equations, based on the geometric Hamiltonian method first developed by Crouseilles et al. (J. Plasma Phys., vol. 89, no. 2, 2023, p. 905890215). This technique allows us to achieve great accuracy for the conserved quantities, such as the modulus of the ion spin vector and the total energy. Numerical tests in the linear regime are in accordance with the estimations of the linear response theory. For two-stream equilibria, we study the interplay of instabilities occurring in both the charge and the spin sectors. The set of parameters used in the simulations, with densities close to those of solids (${\approx }10^{29}\ {\rm m}^{-3}$) and temperatures of the order of 10 eV, may be relevant to the warm dense matter regime appearing in some inertial fusion experiments.
The concept of vortex lock-in for a single circular cylinder in an oscillating flow, induced through acoustic forcing, is revisited. Multiple cylinder diameters are investigated over a Reynolds number range between 500 and 7200. The lock-in behaviour is investigated quantitatively through hot-wire anemometry and planar particle image velocimetry measurements. The results corroborate previous findings describing the frequency range over which vortex lock-in occurs. It is found that the cylinder location in a standing wave (pressure node or velocity node) had a significant influence on the lock-in behaviour. A novel scaling which captures the onset of vortex lock-in is proposed which demonstrates that the Strouhal number is important in predicting the amplitude of the velocity fluctuations required to induce lock-in. Velocity fields also reveal the existence of bimodal vortex shedding during lock-in. This is confirmed using snapshot proper orthogonal decomposition which demonstrates that symmetric and alternate shedding modes are simultaneously present during lock-in and that symmetric shedding is inherent to the near wake region only. Reduced-order reconstruction of the instantaneous velocity fields confirmed that features associated with the forcing frequency control the shear layer roll-up up to $x/d=2.1$ while the influence of the asymmetric mode is simply to skew the trajectory of the vortex pair. Since vortex roll-up and the cylinder wake ends at $x/d=2.1$, the emergence of spectral content at $0.5f_e$ is attributed to a wavelength doubling measured between the vortical structures in the flow field.
We investigate the global stability properties of an electron–positron pair plasma in the linear regime. The plasma is confined by the magnetic field of an infinitely long wire. This configuration is the large-aspect-ratio limit of the levitated dipole experiment of the APEX collaboration. The stability is governed by the diocotron mode and the interchange mode. The diocotron mode dominates in the case of a cold, non-neutral plasma. For specific density profiles we find analytic solutions. We derive a necessary condition for instability and find unstable solutions if the plasma forms a thin shell around the wire. Solutions for arbitrary density profiles with finite temperature are obtained numerically. We find that finite-temperature effects stabilise the diocotron mode. The interchange mode, on the other hand, dominates if the plasma is neutral and has a finite temperature. This mode becomes unstable for a steep-enough density gradient, that is aligned with the gradient of the magnetic field strength and is stabilised by the equilibrium $E\times B$ drift of a non-neutral plasma.
Nonlinear compression experiments based on multiple solid thin plates are conducted in an ultra-high peak power Ti:sapphire laser system. The incident laser pulse, with an energy of 80 mJ and a pulse width of 30.2 fs, is compressed to 10.1 fs by a thin-plate based nonlinear compression. Significant small-scale self-focusing is observed as ring structures appear in the near-field of the output pulse at high energy. Numerical simulations based on the experimental setup provide a good explanation for the observed phenomena, offering quantitative predictions of the spectrum, pulse width, dispersion and near- and far-field distributions of the compressed laser pulse.
An efficient compression scheme for modal flow analysis is proposed and validated on data sequences of compressible flow through a linear turbomachinery blade row. The key feature of the compression scheme is a minimal, user-defined distortion of the mutual distance of any snapshot pair in phase space. Through this imposed feature, the model reduction process preserves the temporal dynamics contained in the data sequence, while still decreasing the spatial complexity. The mathematical foundation of the scheme is the fast Johnson–Lindenstrauss transformation (FJLT) which uses randomized projections and a tree-based spectral transform to accomplish the embedding of a high-dimensional data sequence into a lower-dimensional latent space. The compression scheme is coupled to a proper orthogonal decomposition and dynamic mode decomposition analysis of flow through a linear blade row. The application to a complex flow-field sequence demonstrates the efficacy of the scheme, where compression rates of two orders of magnitude are achieved, while incurring very small relative errors in the dominant temporal dynamics. This FJLT technique should be attractive to a wide range of modal analyses of large-scale and multi-physics fluid motion.
Laser systems based on coherent beam combination (CBC) that rely on tiled pupil architecture intrinsically carry digital capabilities independently applicable to all three essential characteristics of a laser pulse: amplitude, phase and polarization. Those capabilities allow the far-field energy distribution to be flexibly tailored in real time. Operation in the femtosecond regime at high repetition rates gives access to a wide range of applications requiring both high peak and average powers. We address the task of independent peak versus average power adjustment needed for applications seeking to decouple nonlinear phenomena associated with GW peak power from the thermal load inherent to kW average power operation. The technical solutions proposed are presented in the framework of the Ecole Polytechnique XCAN CBC laser platform (61 independent channels) with an emphasis on thermal management measures implemented to ensure its nominal operation.
In recent years, the generalised quasilinear (GQL) approximation has been developed and its efficacy tested against purely quasilinear (QL) approximations. GQL systematically interpolates between QL and fully nonlinear dynamics by employing a generalised Reynolds decomposition. Here, we examine an exact statistical closure for the GQL equations on the doubly periodic $\beta$-plane. Closure is achieved at second order using a generalised cumulant approach which we term GCE2. GCE2 is shown to yield improved performance over statistical representations of purely QL dynamics (CE2) and thus enables direct statistical simulation of complex mean flows that do not entirely fall within the remit of pure QL theory. Despite the existence of an exact closure, GCE2 like CE2 admits the possibility of a rank instability that leads to differences with statistics obtained from GQL. Recognition of this instability is a necessary step before further progress can be made with the GCE2 statistical closure.
We present new orbital solutions for 15 binaries, which were astrometrically measured by our team during 2010-2013, using the FastCam “lucky-imaging” camera installed at the 1.5-m Carlos Sánchez Telescope (CST) at the Observatorio del Teide, Tenerife (Spain). We present first orbital solutions for BU 1292, STF 147, HDS 1898 and STT 325 and revise orbital solutions for AG 14, D 5 AB, A 1581, HO 525 AB,WOR 19, A 1999, HU 572, HU 742, COU 227, BU 696 AB, and A 893. We apply two orbital calculation techniques, the “three-dimensional grid search method”, first described by Hartkopf, McAlister, & Franz (1989), and the Docobo’s analytical method (Docobo 1985). We use our tool “Binary Deblending”, based on deblending the entire observed multiband photometry into fundamental and photometric parameters for each stellar component based on PARSEC isochrones. We also obatain the total mass for all systems. Our findings include the identification of a binary system consisting of two M-type dwarfs (WOR 19), a binary of evolved components (twin F6IV-V stars) in BU 1292, accompanied by a newly discovered wide (10.5") and faint companion with G = 17.05 mag. Additionally, we explore the X-ray emission system STF 147 and a very young quadruple system, WDS 04573+5345. This comprehensive analysis significantly contributes to our understanding of the formation and evolution of stellar systems.
We are showing a significant enhancement in the temporal contrast by reducing the coherent noise of the 10 PW laser system at the Extreme Light Infrastructure - Nuclear Physics facility. The temporal contrast was improved by four orders of magnitude at 10 picoseconds and by more than one order of magnitude at 50 picoseconds before the main peak. This improvement of the picosecond contrast is critical for the experiments using thin solid targets.
Nonlinear hydroelastic waves along a compressed ice sheet lying on top of a two-dimensional fluid of infinite depth are investigated. Based on a Hamiltonian formulation of this problem and by applying techniques from Hamiltonian perturbation theory, a Hamiltonian Dysthe equation is derived for the slowly varying envelope of modulated wavetrains. This derivation is further complicated here by the presence of cubic resonances for which a detailed analysis is given. A Birkhoff normal form transformation is introduced to eliminate non-resonant triads while accommodating resonant ones. It also provides a non-perturbative scheme to reconstruct the ice-sheet deformation from the wave envelope. Linear predictions on the modulational instability of Stokes waves in sea ice are established, and implications for the existence of solitary wave packets are discussed for a range of values of ice compression relative to ice bending. This Dysthe equation is solved numerically to test these predictions. Its numerical solutions are compared with direct simulations of the full Euler system, and very good agreement is observed.
We study the formation of dust-free regions above hot horizontal surfaces of uniform temperature and propose relations for its height in the limit of small particle inertia and gravitational effects. By including particle inertia, thermophoretic, gravitational and viscous effects, we conduct Lagrangian simulations of particle dynamics in a natural convection boundary layer over a horizontal surface. Trajectory analysis of the particles inside the boundary layer on the surface reveals the existence of two separatrices originating from a saddle point, which form the boundary of the dust-free region. These separatrices for low gravitational effects follow the boundary layer thickness, but are of much lower height and also depend on the dimensionless thermophoretic number ($Th$) and Prandtl number ($Pr$). We obtain a relation for the dimensionless height of the dust-free region ($\eta _{df}$) as a function of $Pr$ and $Th$, for low dimensionless gravitational number ($Gn$); the numerical solution of this equation gives us the dust-free region height for any $Th$ and $Pr$. We then obtain scaling laws for $\eta _{df}$ using the boundary layer equations corresponding to the $Pr \gg 1$ and $Pr \ll 1$ cases; these scaling laws are shown to be valid respectively for $Pr>1$ and $Pr<1$, except in the large $\eta$ limit for $Pr>1$, where $\eta$ is the boundary layer similarity variable. We then obtain an empirical relation in this large $\eta$ limit using the numerical solutions of the boundary layer equations for the intermediate $Pr$ case to obtain scaling laws for dust-free region height for the whole range of $Pr \ll 1$ to $Pr \gg 1$.
The emerging era of big data in radio astronomy demands more efficient and higher-quality processing of observational data. While deep learning methods have been applied to tasks such as automatic radio frequency interference (RFI) detection, these methods often face limitations, including dependence on training data and poor generalisation, which are also common issues in other deep learning applications within astronomy. In this study, we investigate the use of the open-source image recognition and segmentation model, Segment Anything Model (SAM), and its optimised version, HQ-SAM, due to their impressive generalisation capabilities. We evaluate these models across various tasks, including RFI detection and solar radio burst (SRB) identification. For RFI detection, HQ-SAM (SAM) shows performance that is comparable to or even superior to the SumThreshold method, especially with large-area broadband RFI data. In the search for SRBs, HQ-SAM demonstrates strong recognition abilities for Type II and Type III bursts. Overall, with its impressive generalisation capability, SAM (HQ-SAM) can be a promising candidate for further optimisation and application in RFI and event detection tasks in radio astronomy.
In this paper, we prove that the third near-infrared (NIR-III) window high-power laser with wavelength in the range of 1600–1800 nm can be obtained by the coherent Raman fiber amplification technique through theoretical and experimental study. Detailed numerical simulation reveals that the nonlinear dynamics of the Raman fiber amplification in the polarization-maintaining double-clad erbium-ytterbium co-doped fiber is similar to that of the Mamyshev oscillator. Through the spectral filtering effect induced by finite Raman gain, we can obtain a high-quality Raman pulse. According to the theoretical results, we design a simple Raman fiber amplification laser and finally obtain a high-quality watt-level NIR-III window laser pulse in which the central wavelength is about 1650 nm and the pulse width can reach 85 fs. The experimental results correspond to the simulation results. Such nonlinear effect is universal in all kinds of fibers, and we think this technology can provide a great contribution to the development of ultrafast fiber lasers.
Since August 2014, a monitoring survey at a frequency of 111 MHz has been conducted on the Large Phased Array (LPA) radio telescope of the P.N. Lebedev Physical Institute (LPI). We report the discovery of a bright pulse having a dispersion measure (DM) equal to 134.4 ± 2 pc cm–3, a peak flux density (Sp) equal to 20 ± 4 Jy and a half-width (We) equal to 211 ± 6 ms. The excessive DM of the pulse, after taking into account the MilkyWay contribution, is 114 pc cm–3 that indicates its extragalactic origin. Such value of DM corresponds to the luminosity distance 713 Mpc. The above parameters make the pulse to be a reliable candidate to the fast radio burst (FRB) event, and then it is the second FRB detected at such a large λ ∼ 2.7 m wavelength and the first one among non-repeating FRBs. The normalized luminosity Lν of the event, which we have designated as FRB 20190203, estimated under assumption that the whole excessive DM is determined by the intergalactic environment toward the host galaxy, is equal to ≃ 1034 erg s–1Hz–1. In addition to the study of radio data we analyzed data from the quasi-simultaneous observations of the sky in the high energy (≥ 80 keV) band by the omnidirectional detector SPI/ACS aboard the INTEGRAL orbital observatory (in order to look for a possible gamma-ray counterpart of FRB 20190203). We did not detect any transient events exceeding the background at a statistically significant level. In the INTEGRAL archive, the FRB 20190203 localization region has been observed many times with with a total exposure of ∼ 73.2 days. We have analyzed the data but were unable to find any reliable short gamma-ray bursts from the FRB 20190203 position. Finally we note that the observed properties of FRB 20190203 can be reproduced well in the framework of a maser synchrotron model operating in the far reverse shock (at a distance of ∼ 1015 cm) of a magnetar. However, triggering the burst requires a high conversion efficiency (at the level of 1%) of the shock wave energy into the radio emission.
We study linear convective instability in a mushy layer formed by solidification of a binary alloy, cooled by either an isothermal perfectly conducting boundary or an imperfectly conducting boundary where the surface temperature depends linearly on the surface heat flux. A companion paper (Hitchen & Wells, J. Fluid Mech., 2025, in press) showed how thermal and salinity conditions impact mush structure. We here quantify the impact on convective instability, described by a Rayleigh number characterising the ratio of buoyancy to dissipative mechanisms. Two limits emerge for a perfectly conducting boundary. When the salinity-dependent freezing-point depression is large versus the temperature difference across the mush, convection penetrates throughout the depth of a high-porosity mush. The other limit, which we will call the Stefan limit, has small freezing-point depression and inhibits convection, which localises at onset to a high-porosity boundary layer near the mush–liquid interface. Scaling arguments characterise variation of the critical Rayleigh number and wavenumber based on the potential energy contained in order-one aspect ratio convective cells over the high-porosity regions. The Stefan number characterises the ratio of latent and sensible heats, and has moderate impact on stability via modification of the background temperature and porosity. For imperfectly conducting boundaries, the changing surface temperature causes stability to decrease over time in the limit of large freezing-point depression, but in the Stefan limit combines with the decreasing porosity to yield non-monotonic variation of the critical Rayleigh number. We discuss the implications for convection in growing sea ice.
This paper presents a theoretical model of plasma equilibrium in the diamagnetic confinement mode in an axisymmetric mirror device with neutral beam injection. The hot ionic component is described within the framework of the kinetic theory, since the Larmor radius of the injected ions appears to be comparable to or even larger than the characteristic scale of the magnetic field inhomogeneity. The electron drag of the hot ions is taken into account, while the angular scattering of the hot ions due to Coulomb collisions is neglected. The background warm plasma, on the contrary, is considered to be in local thermal equilibrium, i.e. has a Maxwellian distribution function and is described in terms of magnetohydrodynamics. The density of the hot ions is assumed to be negligible compared with that of the warm plasma. Both the conventional gas-dynamic loss and the non-adiabatic loss specific to the diamagnetic confinement mode are taken into account. In this work, we do not consider the effects of the warm plasma rotation as well as the inhomogeneity of the electrostatic potential. A self-consistent theoretical model of the plasma equilibrium is constructed. In the case of the cylindrical bubble, this model is reduced to a simpler one. The numerical solutions in the limit of a thin transition layer of the diamagnetic bubble are found. Examples of the equilibria corresponding to the gas-dynamic multiple-mirror trap device are considered.
We investigate the spreading of falling ambient-temperature Newtonian drops after their normal impact on a quartz plate covered with a thin layer of liquid nitrogen. As a drop expands, liquid nitrogen evaporates, generating a vapour film that maintains the drop in levitation. Consequently, the latter spreads in inverse Leidenfrost conditions. Three drop-spreading regimes are observed: (i) inertio-capillary, (ii) inertio-viscous, and (iii) inertio-viscous-capillary. In the first regime, although the drop expansion is essentially driven by a competition between inertial and capillary stresses, it is also affected by viscous effects emerging from the vapour film, which ultimately favours the development of a shear flow within the drop. Interestingly, vapour film effects become marginal in both the second and third regimes, allowing the drop to undergo biaxial extension primarily. More specifically, in the inertio-viscous scenario, the expansion is driven by the balance between inertial and biaxial extensional viscous stresses in the drop. Finally, inertia, capillarity and drop viscosity are all relevant in the third regime. These physical mechanisms are underlined through a mixed approach combining experiments with multiphase three-dimensional numerical simulations in light of spreading dynamics analyses, energy transfer and scaling laws. Our results are rationalized in a two-dimensional diagram linking the drops’ maximum expansion and spreading time with the observed spreading regimes through a single dimensionless parameter given by the square root of the capillary number (the ratio of the viscous stress to the capillary stress).
An ionized gas medium (plasma state) turns to a complex state of plasma or dusty plasma if micrometre- to submicrometre-sized solid dust particles are introduced in it. The dusty plasma medium exhibits fluid- as well as solid-like characteristics at different background plasma conditions. It supports various linear and nonlinear dynamical structures because of external perturbation and internal instabilities. The vortical or coherent structure in the dusty plasma medium is a kind of self-sustained dynamical structure that is formed either by instabilities or by external forcing. In this review article, the author discusses the past theoretical, experimental and computational investigations on vortical and coherent structures in unmagnetized and magnetized dusty plasmas. The possible mechanisms of the formation of vortices in a dust-grain medium are discussed in detail. The studies on the evolution of vortices and their correlation with turbulence are also reviewed.