We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The added mass force resulting from the acceleration of a body in a fluid is of fundamental and practical interest in dispersed multiphase flows. Euler–Lagrange (EL) and Euler–Euler (EE) simulations require closure terms for the added mass force in order to accurately couple the conserved variables between phases. Presently, a more thorough understanding of the added mass force in a multi-particle system is developed based on potential flow resulting in a resistance matrix formulation analogous to Stokesian dynamics. This formulation is then used to generate a dataset of added mass resistance matrices for large systems of randomly generated particles. This methodology is used to create a volume fraction corrected binary model for predicting the added mass force in large systems as well as generate statistics of the added mass force in such systems. This work provides clarification to the theory of the added mass force for particle clouds, and modelling options that may be implemented in existing EL and EE codes.
We present a construction of left braces of right nilpotency class at most two based on suitable actions of an abelian group on itself with an invariance condition. This construction allows us to recover the construction of a free right nilpotent one-generated left brace of class two.
We present the first experimental observations of the dust acoustic wave where the wave was observed to propagate in the directions of gravity and magnetic field when these directions were not aligned. The experiments were conducted in the Magnetized Dusty Plasma eXperiment facility using a novel electrode system that allows for the angle between gravity and the magnetic field to be varied in a controlled way. This letter reports on measurements in an rf glow discharge argon plasma environment where the angle between direction of gravity and the magnetic field is 45$^{\circ }$. When there was no applied magnetic field, the wave was observed to propagate in the direction of gravity. However, as the magnetic field increased and the ions transitioned from flowing in the direction of gravity to the direction of the magnetic field, a second wave emerged and two distinct waves were observed to simultaneously propagate, one in the direction of gravity and one in the direction of the magnetic field. As the magnetic field was further increased, the wave that propagated in the direction of gravity was suppressed and the wave was only observed to propagate in the direction of the applied magnetic field. We also observe that the speed and the kinetic temperature of the dust for the mode that propagated in the direction of gravity decreased with increasing magnetic field while the speed and the kinetic temperature of the dust for the mode that propagated in the direction of the magnetic field increased with increasing magnetic field. These measurements suggest that an ion-dust streaming instability is at least partially responsible for the high temperatures that have previously been observed in dusty plasmas when the dust acoustic wave is present.
This work presents an experimental investigation of the effects of vortex shedding suppression on the properties and recovery of turbulent wakes. Four plates, properly modified so that they produce different vortex shedding strengths, are tested using high speed particle image velocimetry and hot-wire anemometry, and analysed using spectral proper orthogonal decomposition, mean-flow linear stability analysis and various turbulence statistics. When present, vortex shedding is found to exhibit a characteristic frequency that scales with the mean shear, providing a link between the mean flow and the main turbulent motion. To achieve full suppression of shedding, we combine the effects of porosity and fractal perimeter. The mean shear is then decreased to the point where the flow becomes convectively unstable and shedding vanishes. In that case, the onset of self-similarity is delayed, compared with the case with vortex shedding, and appears after another large-scale structure, the secondary vortex street, emerges. It is also found that both large- and small-scale intermittency are starkly reduced when shedding is absent. A simple theoretical representation of the wake dynamics explains the evolution of the wake properties and its connection to the coherent structures in the flow.
In freely decaying stably stratified turbulent flows, numerical evidence shows that the horizontal displacement of Lagrangian tracers is diffusive while the vertical displacement converges towards a stationary distribution, as shown numerically by Kimura & Herring (J. Fluid Mech., vol. 328, 1996, pp. 253–269). Here, we develop a stochastic model for the vertical dispersion of Lagrangian tracers in stably stratified turbulent flows that aims to replicate and explain the emergence of a stationary probability distribution for the vertical displacement of such tracers. More precisely, our model is based on the assumption that the dynamical evolution of the tracers results from the competing effects of buoyancy forces that tend to bring a vertically perturbed fluid parcel (carrying tracers) to its equilibrium position and turbulent fluctuations that tend to disperse tracers. When the density of a fluid parcel is allowed to change due to molecular diffusion, a third effect needs to be taken into account: irreversible mixing. Indeed, ‘mixing’ dynamically and irreversibly changes the equilibrium position of the parcel and affects the buoyancy force that ‘stirs’ it on larger scales. These intricate couplings are modelled using a stochastic resetting process (Evans & Majumdar, Phys. Rev. Lett., vol. 106, issue 16, 2011, 160601) with memory. More precisely, Lagrangian tracers in stratified turbulent flows are assumed to follow random trajectories that obey a Brownian process. In addition, their stochastic paths can be reset to a given position (corresponding to the dynamically changing equilibrium position of a density structure containing the tracers) at a given rate. Scalings for the model parameters as functions of the molecular properties of the fluid and the turbulent characteristics of the flow are obtained by analysing the dynamics of an idealised density structure. Even though highly idealised, the model has the advantage of being analytically solvable. In particular, we show the emergence of a stationary distribution for the vertical displacement of Lagrangian tracers. We compare the predictions of this model with direct numerical simulation data at various Prandtl numbers $Pr$, the ratio of kinematic viscosity to molecular diffusion.
A quasi-linear reduced transport model is developed from a database of high-$\beta$ electromagnetic nonlinear gyrokinetic simulations performed with spherical tokamak for energy production (STEP) relevant parameters. The quasi-linear model is fully electromagnetic and accounts for the effect of equilibrium flow shear using a novel approach. Its flux predictions are shown to agree quantitatively with predictions from local nonlinear gyrokinetic simulations across a broad range of STEP-relevant local equilibria. This reduced transport model is implemented in the T3D transport solver that is used to perform the first flux-driven simulations for STEP to account for transport from hybrid kinetic ballooning mode turbulence, which dominates over a wide region of the core plasma. Nonlinear gyrokinetic simulations of the final transport steady state from T3D return turbulent fluxes that are consistent with the reduced model, indicating that the quasi-linear model may also be appropriate for describing the transport steady state. Within the assumption considered here, our simulations support the existence of a transport steady state in STEP with a fusion power comparable to that in the burning flat top of the conceptual design, but do not demonstrate how this state can be accessed.
Using two counter-propagating ultra-intense laser interactions with a solid target, we conducted a study on the generation of electron-positron pairs via the multi-photon Breit–Wheeler (BW) process and trident process. These processes were simulated using the particle-in-cell (PIC) code EPOCH. Our proposed scheme involves irradiating two targets with two counter-propagating lasers. High-energy photons are produced when hot electrons collide with the reflected laser pulse at the target's front, leading to electron and positron pair production. In the single-target scenario, electron bunches are extracted from the target by the p-polarized laser electromagnetic field and accelerated by the laser ponderomotive force before colliding with the counter-propagating laser. However, using two targets enhances pair creation compared with the single-target set-up. We observed that in two-target configurations, the increased number of high-energy gamma-rays contributes to higher-energy electron–positron generation. Additionally, the generation of hot electrons is also more pronounced in this scheme. Consequently, the laser demonstrates higher efficiency in generating gamma photons and positrons in the dual-target set-up, which is beneficial for investigating high-energy pair production and gamma-ray emission. The generated positrons exhibit a density of the order of $10^{27}\,\text {m}^{-3}$ and can be accelerated to energies of 1.5 GeV. The involvement of hot electrons in the target is crucial for generating high-energy photons and positrons. The maximum pair yield reaches $8 \times 10^9$ for the BW process and $10^8$ for the trident process. Notably, the total laser energy conversion efficiencies to electrons, $\gamma$-rays and positrons show improvement in the dual-target configuration. Specifically, the laser energy absorbed by positrons increases from 11.62 % in Case A to 13.12 % in Case B. These enhancements in conversion efficiency and electron/positron density have significant practical implications in experimental set-ups. In both the BW and trident processes, the two-target set-up dominates, highlighting its effectiveness. We also compared the strengths of both approaches, suggesting that these simple models of implementing two targets can be used in experiments as well.
Magnetic reconnection leads to the formation of island-shaped magnetic structure(s). Due to disagreement between theoretical evaluations of the characteristic reconnection time and observations, it is commonly accepted that the collisionality (or resistivity) is too low to explain magnetic reconnection phenomena in fusion plasmas. Thus, magnetic reconnection still raises many open questions. The work presented here aims to improve the fundamental knowledge about ‘the life of a magnetic island’. Here, in the light of the many works of the last 70 years, a new paradigm for understanding magnetic reconnection in fusion plasmas is proposed. The life of a magnetic island (whatever its scale) follows three phases: the origin, the growth and the saturation. The possible physical mechanisms at play in these three phases will be investigated. First, for the island origin, typical time scales in link with magnetic reconnection will be evaluated for three tokamaks of different sizes (TCV, WEST and JET) to verify if magnetic reconnection is such an unexplained phenomenon in fusion plasmas. Second, for the island drive, the richness of possible mechanisms leading to ‘rapid’ magnetic island growth in fusion devices will be presented for small and large scales. Third comes the island saturation step. Results on the prediction of a large island width at saturation are presented and discussed.
In hydrodynamic (HD) turbulence, an exact decomposition of the energy flux across scales has been derived that identifies the contributions associated with vortex stretching and strain self-amplification (Johnson, Phys. Rev. Lett., vol. 124, 2020 104501; J. Fluid Mech., vol. 922, 2021, A3) to the energy flux across scales. Here, we extend this methodology to general coupled advection–diffusion equations and, in particular, to homogeneous magnetohydrodynamic (MHD) turbulence. We show that several MHD subfluxes are related to each other by kinematic constraints akin to the Betchov relation in HD. Applied to data from direct numerical simulations, this decomposition allows for an identification of physical processes and for the quantification of their respective contributions to the energy cascade, as well as a quantitative assessment of their multi-scale nature through a further decomposition into single- and multi-scale terms. We find that vortex stretching is strongly depleted in MHD compared with HD, and the kinetic energy is transferred from large to small scales almost exclusively by the generation of regions of small-scale intense strain induced by the Lorentz force. In regions of large strain, current sheets are stretched by large-scale straining motion into regions of magnetic shear. This magnetic shear in turn drives extensional flows at smaller scales. Magnetic energy is transferred from large to small scales predominantly by the aforementioned current-sheet thinning in regions of high strain. The contributions from current-filament stretching – the analogue to vortex stretching – and from bending of magnetic field-lines into current filaments by vortical motion are both almost negligible, although the latter induces strong backscatter of magnetic energy. Consequences of these results for subgrid-scale turbulence modelling are discussed.
We propose a computational framework for simulating the self-similar regime of turbulent Rayleigh–Taylor (RT) mixing layers in a statistically stationary manner. By leveraging the anticipated self-similar behaviour of RT mixing layers, a transformation of the vertical coordinate and velocities is applied to the Navier–Stokes equations (NSE), yielding modified equations that resemble the original NSE but include two sets of additional terms. Solving these equations, a statistically stationary RT (SRT) flow is achieved. Unlike temporally growing Rayleigh–Taylor (TRT) flow, SRT flow is independent of initial conditions and can be simulated over infinite simulation time without escalating resolution requirements, hence guaranteeing statistical convergence. Direct numerical simulations (DNS) are performed at an Atwood number of 0.5 and unity Schmidt number. By varying the ratio of the mixing layer height to the domain width, a minimal flow unit of aspect ratio 1.5 is found to approximate TRT turbulence in the self-similar mode-coupling regime. The SRT minimal flow unit has one-sixteenth the number of grid points required by the equivalent TRT simulation of the same Reynolds number and grid resolution. The resultant flow corresponds to a theoretical limit where self-similarity is observed in all fields and across the entire spatial domain – a late-time state that existing experiments and DNS of TRT flow have difficulties attaining. Simulations of the SRT minimal flow unit span TRT-equivalent Reynolds numbers (based on mixing layer height) ranging from 500 to 10 800. The SRT results are validated against TRT data from this study as well as from Cabot & Cook (Nat. Phys., vol. 2, 2006, pp. 562–568).
There is growing evidence that the broadband radio spectral energy distributions (SEDs) of star-forming galaxies (SFGs) contain a wealth of complex physics. In this paper we aim to determine the physical emission and loss processes causing radio SED curvature and steepening to see what observed global astrophysical properties, if any, are correlated with radio SED complexity. To do this, we have acquired radio continuum data between 70 MHz and 17 GHz for a sample of 19 southern local ($z \lt 0.04$) SFGs. Of this sample 11 are selected to contain low-frequency ($ \lt $300 MHz) turnovers (LFTOs) in their SEDs and eight are control galaxies with similar global properties. We model the radio SEDs for our sample using a Bayesian framework whereby radio emission (synchrotron and free-free) and absorption or loss processes are included modularly. We find that without the inclusion of higher frequency data ($ \gt $17 GHz) single synchrotron power-law based models are always preferred for our sample; however, additional processes including free-free absorption (FFA) and synchrotron losses are often required to accurately model radio SED complexity in SFGs. The fitted synchrotron spectral indices range from $-0.45$ to $-1.07$ and are strongly anticorrelated with stellar mass suggesting that synchrotron losses are the dominant mechanism acting to steepen the spectral index in larger/more massive nearby SFGs. We find that LFTOs in the radio SED are independent from the inclination of SFGs; however, higher inclination galaxies tend to have steeper fitted spectral indices indicating losses to diffusion of cosmic ray electrons into the galactic halo. Four of five of the merging systems in our SFG sample have elevated specific star formation rates and flatter fitted spectral indices with unconstrained LFTOs. Lastly, we find no significant separation in global properties between SFGs with or without modelled LFTOs. Overall these results suggest that LFTOs are likely caused by a combination of FFA and ionisation losses in individual recent starburst regions with specific orientations and interstellar medium properties that, when averaged over the entire galaxy, do not correlate with global astrophysical properties.
Fluid dynamics systems driven by dominant, near-periodic dynamics are common across wakes, jets, rotating machinery and high-speed flows. Traditional modal decomposition techniques have been used to gain insight into these flows, but can require many modes to represent key physical processes. With the aim of generating modes that intuitively convey the underlying physical mechanisms, we propose an intrinsic phase-based proper orthogonal decomposition (IPhaB POD) method, which creates energetically ranked modes that evolve along a characteristic cycle of the dominant near-periodic dynamics. Our proposed formulation is set in the time domain, which is particularly useful in cases where the cyclical content is imperfectly periodic. We formally derive IPhaB POD within a POD framework that therefore inherits the energetically ranked decomposition and optimal low-rank representation inherent to POD. As part of this derivation, a dynamical systems representation is utilized, facilitating a definition of phase within the system's near-periodic cycle in the time domain. An expectation operator and inner product are also constructed relative to this definition of phase in a manner that allows for the various cycles within the data to demonstrate imperfect periodicity. The formulation is tested on two sample problems: a simple, low Reynolds number aerofoil wake, and a complex, high-speed pulsating shock wave problem. The method is compared to space-only POD, spectral POD (SPOD) and cyclostationary SPOD. The method is shown to better isolate the dominant, near-periodic global dynamics in a time-varying IPhaB mean, and isolate the tethered, local-in-phase dynamics in a series of time-varying modes.
Flow field in the near wake of a short-finite circular cylinder at $L/D=1.0$ with an angle of attack between 0$^\circ$–15$^\circ$, where the transition from the non-reattaching flow to the reattaching flow appears, is investigated in wind tunnel tests with a supportless condition. Stereo particle image velocimetry measurements were applied to the experiments at the Reynolds number of $3.46\times 10^4$, and velocity fields in the near wake were obtained. The data was mainly analysed using spectral proper orthogonal decomposition. Characteristic large-scale wake structures of recirculation bubble pumping and large-scale vortex shedding were identified in the near wake of the cylinder regardless of the angle of attack. The phase difference of expansion and contraction of the recirculation flow appears in the recirculation bubble pumping at $\alpha \neq 0^\circ$. On the other hand, the eigenfunctions of velocity fluctuations at the vortex shedding frequency show a similar spatial pattern regardless of $\alpha$. Frequency analyses of wake position calculated from the reconstructed velocity field clarified that peak frequency is different between two in-plane directions when $\alpha \neq 0^\circ$. In addition, three vortex shedding patterns (anticlockwise/clockwise circular and flapping) are identified not only at $\alpha =0^\circ$ but also $\alpha \neq 0^\circ$. The feature of wake position in the radial direction for each pattern is observed regardless of the angle of attack. The relationship between the recirculation bubble pumping and the wake position in the radial direction is apparent in the non-reattaching flow but is weaker with $\alpha$ in the reattaching flow.
A classical result of Erdős, Lovász and Spencer from the late 1970s asserts that the dimension of the feasible region of densities of graphs with at most k vertices in large graphs is equal to the number of non-trivial connected graphs with at most k vertices. Indecomposable permutations play the role of connected graphs in the realm of permutations, and Glebov et al. showed that pattern densities of indecomposable permutations are independent, i.e., the dimension of the feasible region of densities of permutation patterns of size at most k is at least the number of non-trivial indecomposable permutations of size at most k. However, this lower bound is not tight already for $k=3$. We prove that the dimension of the feasible region of densities of permutation patterns of size at most k is equal to the number of non-trivial Lyndon permutations of size at most k. The proof exploits an interplay between algebra and combinatorics inherent to the study of Lyndon words.
Observations of Galactic supernova remnants (SNRs) are crucial to understanding supernova explosion mechanisms and their impact on our Galaxy’s evolution. SNRs are usually identified by searching for extended, circular structures in all-sky surveys. However, the resolution and sensitivity of any given survey results in selection biases related to the brightness and angular scale of a subset of the total SNR population. As a result, we have only identified 1/3 of the expected number of SNRs in our Galaxy. We used data collected by the Murchison Widefield Array (MWA) to perform a visual search for SNR candidates over $ 285^{\circ} \lt l \lt 70^{\circ}$ and $|b| \lt 16^{\circ}$. We then used the Widefield Infrared Survey Explorer to eliminate likely Hii regions from our SNR candidate sample. By exploiting the resolution and sensitivity of MWA data, we have successfully detected 10 new candidates using our proposed method. In addition, our method has also enabled us to detect and verify 10 previously known but unconfirmed candidates. The 20 SNR candidates described in the paper will increase the known SNR population in the Galaxy by 7%.
Super-resolution of turbulence is a term used to describe the prediction of high-resolution snapshots of a flow from coarse-grained observations. This is typically accomplished with a deep neural network and training usually requires a dataset of high-resolution images. An approach is presented here in which robust super-resolution can be performed without access to high-resolution reference data, as might be expected in an experiment. The training procedure is similar to data assimilation, wherein the model learns to predict an initial condition that leads to accurate coarse-grained predictions at later times, while only being shown coarse-grained observations. Implementation of the approach requires the use of a fully differentiable flow solver in the training loop to allow for time-marching of predictions. A range of models are trained on data generated from forced, two-dimensional turbulence. The networks have reconstruction errors which are similar to those obtained with ‘standard’ super-resolution approaches using high-resolution data. Furthermore, the methods are comparable to the performance of standard data assimilation for state estimation on individual trajectories, outperforming these variational approaches at initial time and remaining robust when unrolled in time where performance of the standard data-assimilation algorithm improves.
Using the ONEDFEL code we perform free electron laser simulations in the astrophysically important guide-field dominated regime. For wigglers’ (Alfvén waves) wavelengths of tens of kilometres and beam Lorentz factor ${\sim }10^3$, the resulting coherently emitted waves are in the centimetre range. Our simulations show a growth of the wave intensity over fourteen orders of magnitude, over the astrophysically relevant scale of approximately a few kilometres. The signal grows from noise (unseeded). The resulting spectrum shows fine spectral substructures, reminiscent of those observed in fast radio bursts.
The regulation of electron heat transport in high-$\beta$, weakly collisional, magnetized plasma is investigated. A temperature gradient oriented along a mean magnetic field can induce a kinetic heat-flux-driven whistler instability (HWI), which back-reacts on the transport by scattering electrons and impeding their flow. Previous analytical and numerical studies have shown that the heat flux for the saturated HWI scales as $\beta _e^{-1}$. These numerical studies, however, had limited scale separation and consequently large fluctuation amplitudes, which calls into question their relevance at astrophysical scales. To this end, we perform a series of particle-in-cell simulations of the HWI across a range of $\beta _e$ and temperature-gradient length scales under two different physical set-ups. The saturated heat flux in all of our simulations follows the expected $\beta _e^{-1}$ scaling, supporting the robustness of the result. We also use our simulation results to develop and implement several methods to construct an effective collision operator for whistler turbulence. The results point to an issue with the standard quasi-linear explanation of HWI saturation, which is analogous to the well-known $90^{\circ }$ scattering problem in the cosmic-ray community. Despite this limitation, the methods developed here can serve as a blueprint for future work seeking to characterize the effective collisionality caused by kinetic instabilities.
Ion cyclotron resonance heating is a versatile heating method that has been demonstrated to be able to efficiently couple power directly to the ions via the fast magnetosonic wave. However, at temperatures relevant for reactor grade devices such as DEMO, electron damping becomes increasingly important. To reduce electron damping, it is possible to use an antenna with a power spectrum dominated by low parallel wavenumbers. Moreover, using an antenna with a unidirectional spectrum, such as a travelling wave array antenna, the parallel wavenumber can be downshifted by mounting the antenna in an elevated position relative to the equatorial plane. This downshift can potentially enhance ion heating as well as fast wave current drive efficiency. Thus, such a system could benefit ion heating during the ramp-up phase and be used for current drive during flat-top operation. To test this principle, both ion heating and current drive have been simulated in a DEMO-like plasma for a few different mounting positions of the antenna using the FEMIC code. We find that moving the antenna off the equatorial plane makes ion heating more efficient for all considered plasma temperatures at the expense of on-axis heating. Moreover, although current drive efficiency is enhanced, electron damping is reduced for lower mode numbers, thus reducing the driven current in this part of the spectrum.