We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Jellyfish galaxies are starburst galaxies with ram-pressure-stripped tails and blue star-forming knots. These galaxies show a snapshot of star formation enhancement triggered by ram pressure stripping (RPS), being important targets for studying the RPS-induced star formation in gas-rich galaxies. Here we investigate the star formation activity of five jellyfish galaxies in massive clusters, using Gemini GMOS/IFU observations. From the Hα-derived star formation rates (SFRs), we find that our sample shows higher SFR excess to the star formation main sequence than the jellyfish galaxies in low-mass clusters. From the compiled sample of jellyfish galaxies in low-mass to high-mass host clusters, we suggest that the star formation activity of jellyfish galaxies has positive correlations with host cluster mass and degree of RPS. These relationships imply that higher ram pressure environments tend to trigger stronger starbursts in jellyfish galaxies in the early stage of RPS.
Galaxies, particularly disc galaxies, show a wide variety of internal structures (e.g. spirals, bars, and bulges). Mapping Nearby Galaxies at Apache Point Observatory (MaNGA, part of the fourth incarnation of the Sloan Digital Sky Surveys), obtained spatially resolved spectral maps for 10,010 nearby galaxies. Many results from MaNGA have collapsed this structure into azimuthally averaged radial gradients, or symmetric 2D shapes, but there is significantly more information about the effect internal structures have on the evolution of galaxies available if we can identify different internal structures. One of the simplest ways to identify irregular internal structures in galaxies is by visual inspection. By employing a citizen science technique to ask this question of N independent volunteers we have obtained quantitatively robust masks (and errors) for spirals and bars in MaNGA target galaxies. In addition to internal features the interface asked users to identify foreground stars and foreground/background galaxies.
Atmospheric escape has traditionally been observed using hydrogen Lyman-α transits, but more recent detections utilise the metastable helium triplet lines at 1083nm. Capable of being observed from the ground, this helium signature offers new possibilities for studying atmospheric escape. Such detections are dependent however on the specific high-energy flux received by the planet. Previous studies show that the extreme-UV band both drives atmospheric escape and populates the triplet state, whereas lower energy mid-UV radiation depopulates the state through photoionisations. This is supported observationally, with the majority of planets with 1083nm detections orbiting a K-type star, which emits a favourably high ratio of EUV to mid-UV flux. The goal of our work is understanding how the observability of escaping helium evolves. We couple our one-dimensional hydrodynamic non-isothermal model of atmospheric escape with a ray-tracing technique to achieve this. We consider the evolution of the stellar radiation and the planet’s gravitational potential.
We draw the K-band luminosity functions (CLFs) of young massive clusters (YMCs) hosted by 34 SUNBIRD targets to evaluate the impact of the host galaxy environment on their YMC properties. The depth and high resolution of the NIR images (PSF ∼ 0.1”) allow us to test whether CLF power-law slopes (α) of high star-forming galaxies are similar to those of gas-poor low star formation rate (SFR) galaxies. We found that α ranges between 1.53 and 2.41 with a median value of 1.87 ± 0.23. We also performed correlation searches between α and the host global properties and noticed that α decreases with an increasing SFR and SFR density. On sub-galactic scales, CLF slopes of cluster-rich galaxies differ by ∼0.5. Our NIR CLF analyses suggest that the extreme environment of high SFR galaxies such as the SUNBIRD sample is likely to affect the formation mechanisms of YMCs and hence to govern the ongoing small-scale SF processes of the host galaxy.
Detection of transients such as supernovae (SNe) and kilonovae (KNe) in early phase has recently become important for understanding the progenitor properties and multi-messenger astronomy. Predicting which galaxy has the higher probability of hosting the transient events would help detect the early phase of the events and get information on their progenitors. The SN and KN rates are known to be a function of star formation rate (SFR) and stellar mass of the host galaxy. The SFR of a galaxy can be estimated from ultraviolet (UV) luminosity. However, the UV magnitudes have been derived carefully only for a limited number of nearby galaxies. Here, we introduce GALEX galaxy catalog of all-sky UV brightness of low redshift galaxies. To do so, we derive the UV photometry of galaxies in the GLADE catalog using the GALEX AIS images, supplemented by GALEX NGS and MIS data. From the near-UV (NUV) and far-UV (FUV) magnitudes, we calculate the SFRs of the galaxies, which will further be useful for estimating the SN and KN rate. The results are compared with previous GALEX UV catalog of galaxies. There will be an updated catalog based on this catalog for calculating KN rate of the galaxies in the future work.
We have carried out ALMA observations toward the environments of G333.0162+00.7615 which was considered as a candidate of high-mass young stellar object (HMYSO) in previous studies. Our dust continuum, molecular line emission and radio recombination line emission observations show that this source is not HMYSO associated with hypercompact (HC) HII regions. Instead, we discovered two new hot cores associate with earliest stages of high mass star formation region. We estimated the rotational temperatures of these cores about 270 K from J=14→13 rotational transition of CH3CN ladder. The moment maps show velocity gradients confirming that this cores are rotating.
When a supernova shockwave launched deep inside the star exits the surface, it probes the circumstellar medium established by prior mass loss from the pre supernova star. The bright electromagnetic display accompanying the shock breakout is influenced by the properties of the star and scripts the history of the stellar mass loss. We investigate with MESA and STELLA codes the radiative display resulting from a set of progenitors that we evolved to core collapse. We simulate with different internal convective overshoot and compositional mixing and two sets of mass loss schema, one the standard “Dutch” scheme and another, an enhanced, episodic mass loss at a late stage. Shock breakout from the star shows double peaked bolometric light curves for the Dutch wind, as well as high velocity ejecta accelerated during shock breakout. We contrast the breakout flash from an optically thick CSM with that of the rarified medium.
Feedback effects by supernovae (SNe) and active galactic nuclei (AGNs) are believed to be essential for galaxy evolution and shaping present-day galaxies, but their exact mechanisms on galactic scales and their impact on CGM/IGM are not well understood yet. In galaxy formation simulations, it is still challenging to resolve sub-parsec scales, and we need to implement subgrid models to account for the physics on small scales. In this article, we summarize some of the efforts to build more physically based feedback models, discuss about pushing the resolution to its limits in galaxy simulations, testing galaxy formation codes under the AGORA code comparison project, and how to probe the impact of feedback using cosmological hydrodynamic simulations via Lyα absorption and CGM/IGM tomography technique. We also discuss our future directions of research in this field and how we make progress by comparing our simulations with observations.
Integral field spectroscopic studies of galaxies in dense environments, such as clusters and groups of galaxies, have provided new insights for understanding how star formation proceeds, and quenches. I present the spatially resolved view of the star formation activity and its link with the multiphase gas in cluster galaxies based on MUSE and multi-wavelength data of the GASP survey. I discuss the link among the different scales (i.e. the link between the spatially resolved and the global star formation rate-stellar mass relation), the spatially resolved signatures and the quenching histories of jellyfish (progenitors) and post-starburst (descendants) galaxies in clusters. Finally, I discuss the multi-wavelength view of star-forming clumps both in galaxy disks and in the tails of stripped gas.
We employ the Feedback In Realistic Environments (FIRE-2) physics model to study how the properties of giant molecular clouds (GMCs) evolve during galaxy mergers. Due to the rarity of mergers in the local Universe, samples of nearby merging galaxies suitable for studies of individual GMCs are limited. Idealized simulations provide us with a new window to study GMC evolution during a merger, and assist in interpreting observations. We conduct a pixel-by-pixel analysis of the simulated molecular gas properties in both undisturbed control galaxies and galaxy mergers. The simulated GMC-pixels follow a similar trend in a diagram of velocity dispersion (σv) versus gas surface density (Σmol) as observed in normal spiral galaxies in the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) survey. For simulated mergers, we see a significant increase in both the Σmol and σv for GMC-pixels by a factor of 5 – 10, which put these pixels to be above the trend of PHANGS galaxies in the σv vs Σmol diagram. This deviation indicates that GMCs in the simulated merger are more gravitationally unbound and have higher virial parameter (αvir) of 10 – 100, which is much larger than that of simulated control galaxies. Furthermore, we find that the increase in αvir generally happens at the same time as the increase in global star formation rate (SFR), which suggests feedback is playing a role in dispersing the gas. The correspondence between high αvir and SFR also suggests some other physical mechanisms besides self-gravity are helping the GMCs in starburst mergers to collapse and form stars.
The standard galaxy formation model predicts that galaxies form within a Cold Dark Matter (CDM) halo and that galaxies are dominated by dark matter. However, recent observations have discovered dark-matter-deficient galaxies with much less dark matter mass than theoretical predictions, and the process of their formation has been discussed. Here, we investigate the physical processes of galaxy formation by collisions between gas-rich dark matter subhalos within the context of the CDM paradigm. We investigate the formation process of dark-matter-deficient galaxies by running three-dimensional simulations of the collision process between dark matter subhalos (DMSHs) with the same mass of 109M⊙ colliding the velocity of 100 km s−1. We then compared the effect of different supernova feedback models, the subgrid physics of the simulation, on the collision-induced formation of galaxies. The results show that the strong feedback model ejects gas out of the system more efficiently than the weak feedback model, leading to lower star formation rates and the formation of a more extended galaxy. Finally, dark-matter-deficient galaxies with stellar masses of ∼ 107M⊙ and ∼ 108M⊙ are formed in the weak and strong feedback models, respectively.
We present maps of the “Survey of Water and Ammonia toward the Galactic center” (SWAG). SWAG was observed over three years (∼550 h) with the Australia Telescope Compact Array (ATCA) and covers the entire Central Molecular Zone (CMZ) at about 26” or ∼1 pc resolution. The observed 21.2–25.6 GHz range contains tens of spectral lines and 4 GHz of continuum. Here, we present some final maps. These include multiple NH3 lines, radio recombination lines, shock tracers like HNCO and methanol (CH3OH), high resolution 22 GHz water masers, and a continuum map. The maps are the foundation for ongoing comprehensive temperature mapping of the CMZ, including the identification of heating mechanisms, the characterization of water maser sources as young stellar objects or AGB stars, as well as chemistry, dynamics, and star formation studies of the ISM in this unique environment.
We have recently hit the milestone of 5,000 exoplanets discovered. In stark contrast with the Solar System, most of the exoplanets we know to date orbit extremely close to their host stars, causing them to lose copious amounts of gas through atmospheric escape at some stage in their lives. In some planets, this process can be so dramatic that they shrink in timescales of a few million to billions of years, imprinting features in the demographics of transiting exoplanets. Depending on the transit geometry, ionizing conditions, and atmospheric properties, a planetary outflow can be observed using transmission spectroscopy in the ultraviolet, optical or near-infrared. In this review, we will discuss the main techniques to observe evaporating exoplanets and their results. To date, we have evidence that at least 28 exoplanets are currently losing their atmospheres, and the literature has reported at least 42 non-detections.
Pristine gas accretion is expected to be the main driver of sustained star formation in galaxies. We measure the required amount of accreted gas at each moment over a galaxy’s history to produce the observed metallicity at that time given its star-forming history. More massive galaxies tend to have higher accretion rates and a larger drop of the accretion rate towards the present time. Within the same mass bin galaxies that are currently star-forming or in the Green Valley have similar, sustained, accretion histories while retired galaxies had a steep decline in the past. Plotting the T80 of the individual accretion histories, a measure of how sustained they are, versus the stellar mass and current sSFR we see a distribution such that currently star-forming galaxies have sustained or recent accretion and retired galaxies have declined accretion histories.
Existence of the cold-mode gas accretion along with the hot-mode accretion can explain the diversity in the galactic star formation history across galaxy mass. We examine the role of various physical processes in producing the observed diversity.
The evolution of giant molecular clouds (GMCs), which are the main sites of star formation, is essential for unraveling how stars form and how galaxies evolve. We analyzed the M33 CO(J = 2–1) data with spatial resolution of 39 pc obtained by ALMA-ACA 7 m array combined with IRAM 30 m. We identified 736 GMCs and classified them into three types; Type I: associated with no Hii regions, Type II: associated with Hii regions with the Hα luminosity L(Hα) < 1037.5 erg s-1, Type III: associated with Hii regions with L(Hα) > 1037.5erg s-1. We found that mass, size, and velocity dispersion of GMCs slightly increase in the order of Type I, II, and III GMCs. Type III GMCs mainly exist in the spiral arm, while many of Type I and Type II GMCs are distributed in the inter-arm. Assuming that the star formation proceeds steadily, we roughly estimated the total GMC lifetime of 30 Myr.
Local Group (LG), the nearest and most complete galactic environment, provides valuable information on the formation and evolution of the Universe. Studying galaxies of different sizes, morphologies, and ages can provide this information. For this purpose, we chose the And IX dSph galaxy, which is one of the observational targets of the Isaac Newton Telescope (INT) survey. A total of 50 long-period variables (LPVs) were found in And IX in two filters, Sloan i' and Harris V at a half-light radius of 2.5 arcmin. The And IX’s star formation history (SFH) was constructed with a maximum star formation rate (SFR) of about 0.00082 ± 0.00031 M⊙ yr−1, using LPVs as a tracer. The total mass return rate of LPVs was calculated based on the spectral energy distribution (SED) of about 2.4 × 10−4 M⊙ yr−1. The distance modulus of 24.56−0.15+0.05 mag was estimated based on the tip of the red giant branch (TRGB).
To understand the physical properties of the interstellar medium (ISM) in various scales, we should investigate it with pc-scale resolution over kpc scale coverage. Here, we report the sub-kpc scale Gas Density Histogram (GDH) of the Milky Way. GDH is a histogram of averaged density and corresponds to the probability density distribution (PDF) of gas volume density. We use galactic plain survey data (l =10∘− 50∘) at 12CO and 13CO (J = 1 − 0) obtained as a part of the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45m telescope (FUGIN). With this method and data, we are free from spatial structure and molecular cloud identification. GDH can be well fitted with single or double log-normal distribution; which we call as the low-density log-normal (L-LN) and high-density log-normal (H-LN) components. We found both the H-LN fraction (fH) and L-LN width (σL) along the gas density axis show a coherent structure on the longitude-velocity diagram. It suggests that there is a relationship between the ISM property and kpc scale structure in the Milky Way.
The KEPLER transit survey with follow-up spectroscopic observations has discovered numerous small planets (super-Earths/sub-Neptunes) and revealed intriguing features of their sizes, orbital periods, and their relations between adjacent planets. The planet size distribution exhibits a bimodal distribution separated by a radius gap at around 1.8 Earth radii. Besides, these small planets within multiple planetary systems show that adjacent planets are similar in size and their period ratios of adjacent planet pairs are similar as well, a phenomenon often dubbed as peas-in-a-pod in the exoplanet community. While the radius gap has been predicted and theorized for years, whether it can be relevant to the orbital architecture peas-in-a-pod is physically unknown. For the first time, we attempted to model both features together through planet formation and evolution processes involving giant impacts and photoevaporation. We showed that our model is generally consistent with the KEPLER results but with a smaller radius gap. The impact of Kubyshikina’s model for photoevaporation on our model is discussed.
Existence of cold-mode gas accretion along with the hot-mode accretion of the shock-heated gas can explain the bimodality in the elemental abundance of the Milky Way disk stars as well as the mass-dependence of galaxy morphology represented by mass ratios of thin disks, thick disks, and bulges.