Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T17:56:14.907Z Has data issue: false hasContentIssue false

Size Evolution and Orbital Architecture of KEPLER Small Planets through Giant Impacts and Photoevaporation

Published online by Cambridge University Press:  16 August 2023

Gu Pin-Gao
Affiliation:
Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan
Matsumoto Yuji
Affiliation:
National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, 181-8588 Tokyo, Japan
Kokubo Eiichiro
Affiliation:
National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, 181-8588 Tokyo, Japan
Kurosaki Kenji
Affiliation:
3Department of Planetology, Kobe University, Nada-ku, Kobe, Hyogo, 657-8501, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The KEPLER transit survey with follow-up spectroscopic observations has discovered numerous small planets (super-Earths/sub-Neptunes) and revealed intriguing features of their sizes, orbital periods, and their relations between adjacent planets. The planet size distribution exhibits a bimodal distribution separated by a radius gap at around 1.8 Earth radii. Besides, these small planets within multiple planetary systems show that adjacent planets are similar in size and their period ratios of adjacent planet pairs are similar as well, a phenomenon often dubbed as peas-in-a-pod in the exoplanet community. While the radius gap has been predicted and theorized for years, whether it can be relevant to the orbital architecture peas-in-a-pod is physically unknown. For the first time, we attempted to model both features together through planet formation and evolution processes involving giant impacts and photoevaporation. We showed that our model is generally consistent with the KEPLER results but with a smaller radius gap. The impact of Kubyshikina’s model for photoevaporation on our model is discussed.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Dai, F., Winn, J. N., Schlaufman, K., et al. 2020, AJ, 159, 247 10.3847/1538-3881/ab88b8CrossRefGoogle Scholar
Erkaev, N. V., Kulikov, Y. N., Lammer, H., et al. 2007, A&A, 472, 329 10.1051/0004-6361:20066929CrossRefGoogle Scholar
Fulton, B. J., Petigura, E. A. 2018, AJ, 156, 264 10.3847/1538-3881/aae828CrossRefGoogle Scholar
Fulton, B. J., Petigura, E. A., Howard, A. W., et al. 2017, AJ, 154, 109 10.3847/1538-3881/aa80ebCrossRefGoogle Scholar
Genda, H., Kobayashi, H., Kokubo, E. 2015, ApJ, 810, 136 10.1088/0004-637X/810/2/136CrossRefGoogle Scholar
Genda, H., Abe, Y. 2003, Icar, 164, 149 10.1016/S0019-1035(03)00101-5CrossRefGoogle Scholar
Ginzburg, S., Schlichting, H. E., Sari, R. 2018, MNRAS, 476, 759 10.1093/mnras/sty290CrossRefGoogle Scholar
Gupta, A., Schlichting, H. E. 2019, MNRAS, 487, 24 10.1093/mnras/stz1230CrossRefGoogle Scholar
Kegerreis, J. A., Eke, V. R., Massey, R. J., Teodoro, L. F. A. 2020, ApJ, 897, 161 10.3847/1538-4357/ab9810CrossRefGoogle Scholar
Kenyon, S. J., Bromley, B. C. 2016, ApJ, 817, 51 10.3847/0004-637X/817/1/51CrossRefGoogle Scholar
Kokubo, E., Ida, S. 2002, ApJ, 581, 666 10.1086/344105CrossRefGoogle Scholar
Kubyshikina, D., Fossati, L., Erkaev, N. V., et al. 2018a, ApJ, 619, 151 Google Scholar
Kubyshikina, D., Fossati, L., Erkaev, N. V., et al. 2018b, ApJ Letters, 886, 18 Google Scholar
Matsumoto, Y., Kokubo, E., Gu, P.-G., Kurosaki, K. 2021, ApJ, 923, 81 10.3847/1538-4357/ac2b2dCrossRefGoogle Scholar
Millholland, S. C., Winn, J. N. 2021, ApJ Letters, 920, 34 10.3847/2041-8213/ac2c77CrossRefGoogle Scholar
Mordirrousta-Galian, D., Locci, D., Micela, G. 2021, ApJ, 891, 158 10.3847/1538-4357/ab7379CrossRefGoogle Scholar
Owen, J. E., Wu, Y. 2013, ApJ, 775, 105 10.1088/0004-637X/775/2/105CrossRefGoogle Scholar
Owen, J. E., Wu, Y. 2017, ApJ, 847, 29 10.3847/1538-4357/aa890aCrossRefGoogle Scholar
Rogers, J. G., Gupta, A., Owen, J. E., Schlichting, H. E. 2021, MNRAS, 508, 5886 10.1093/mnras/stab2897CrossRefGoogle Scholar
Weiss, L. M., Marcy, G. W., Petigura, E. A., et al. 2018, AJ, 155, 48 10.3847/1538-3881/aa9ff6CrossRefGoogle Scholar
Weiss, L. M., Petigura, E. A. 2020, ApJ Letters, 893, L1 10.3847/2041-8213/ab7c69CrossRefGoogle Scholar
Yoshida, Y., Terada, N., Ikoma, M., Kuramoto, K. 2022, ApJ, 934, 137 10.3847/1538-4357/ac7be7CrossRefGoogle Scholar
Zhu, W. 2020, AJ, 159, 188 10.3847/1538-3881/ab7814CrossRefGoogle Scholar