We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Elemental abundances, particularly the C/O ratio, are seen as a way to connect the composition of planetary atmospheres with planet formation scenario and the disc chemical environment. We model the chemical composition of gas and ices in a self-gravitating disc on timescales of 0.5 Myr since its formation to study the evolution of C/O ratio due to dust dynamics and growth and phase transitions of the volatile species. We use the thin-disc hydrodynamic code FEOSAD, which includes disc self-gravity, thermal balance, dust evolution, and turbulent diffusion, and treats dust as a dynamically different and evolving component interacting with the gas. It also describes freeze-out, sublimation, and advection of four most abundant volatile species: H$_2$O, CO$_2$, CH$_4$, and CO. We demonstrate the effect of gas and dust substructures such as spirals and rings on the distribution of volatiles and C/O ratios, including the formation of multiple snowlines of one species, and point out the anticorrelation between dust-to-gas ratio and total C/O ratio emerging due to the contribution of oxygen-rich ice mantles. We identify time and spatial locations where two distinct trigger mechanisms for planet formation are operating and differentiate them by C/O ratio range: wide range of the C/O ratios of $0-1.4$ for streaming instability, and a much narrower range $0.3-0.6$ for gravitational instability (with the initial value of 0.34). This conclusion is corroborated by observations, showing that transiting exoplanets, which possibly experienced migration through a variety of disc conditions, have significantly larger spread of C/O in comparison with directly imaged exoplanets likely formed in gravitationally unstable outer disk regions. We show that the ice-phase $\textrm{C/O}\approx$0.2–0.3 between the CO, CO$_2$, and CH$_4$ snowlines corresponds to the composition of the Solar system comets, that represent primordial planetesimals.
We examine the energy distribution of the fast radio burst (FRB) population using a well-defined sample of 63 FRBs from the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope, 28 of which are localised to a host galaxy. We apply the luminosity-volume ($V/V_{\mathrm{max}}$) test to examine the distribution of these transient sources, accounting for cosmological and instrumental effects, and determine the energy distribution for the sampled population over the redshift range $0.01 \lesssim z \lesssim 1.02$. We find the distribution between $10^{23}$ and $10^{26}$ J Hz$^{-1}$ to be consistent with both a pure power-law with differential slope $\gamma=-1.96 \pm 0.15$, and a Schechter function with $\gamma = -1.82 \pm 0.12$ and downturn energy $E_\mathrm{max} \sim 6.3 \, \times 10^{25}$ J Hz$^{-1}$. We identify systematic effects which currently limit our ability to probe the luminosity function outside this range and give a prescription for their treatment. Finally, we find that with the current dataset, we are unable to distinguish between the evolutionary and spectral models considered in this work.
We present new orbital solutions for 15 binaries, which were astrometrically measured by our team during 2010-2013, using the FastCam “lucky-imaging” camera installed at the 1.5-m Carlos Sánchez Telescope (CST) at the Observatorio del Teide, Tenerife (Spain). We present first orbital solutions for BU 1292, STF 147, HDS 1898 and STT 325 and revise orbital solutions for AG 14, D 5 AB, A 1581, HO 525 AB,WOR 19, A 1999, HU 572, HU 742, COU 227, BU 696 AB, and A 893. We apply two orbital calculation techniques, the “three-dimensional grid search method”, first described by Hartkopf, McAlister, & Franz (1989), and the Docobo’s analytical method (Docobo 1985). We use our tool “Binary Deblending”, based on deblending the entire observed multiband photometry into fundamental and photometric parameters for each stellar component based on PARSEC isochrones. We also obatain the total mass for all systems. Our findings include the identification of a binary system consisting of two M-type dwarfs (WOR 19), a binary of evolved components (twin F6IV-V stars) in BU 1292, accompanied by a newly discovered wide (10.5") and faint companion with G = 17.05 mag. Additionally, we explore the X-ray emission system STF 147 and a very young quadruple system, WDS 04573+5345. This comprehensive analysis significantly contributes to our understanding of the formation and evolution of stellar systems.
The emerging era of big data in radio astronomy demands more efficient and higher-quality processing of observational data. While deep learning methods have been applied to tasks such as automatic radio frequency interference (RFI) detection, these methods often face limitations, including dependence on training data and poor generalisation, which are also common issues in other deep learning applications within astronomy. In this study, we investigate the use of the open-source image recognition and segmentation model, Segment Anything Model (SAM), and its optimised version, HQ-SAM, due to their impressive generalisation capabilities. We evaluate these models across various tasks, including RFI detection and solar radio burst (SRB) identification. For RFI detection, HQ-SAM (SAM) shows performance that is comparable to or even superior to the SumThreshold method, especially with large-area broadband RFI data. In the search for SRBs, HQ-SAM demonstrates strong recognition abilities for Type II and Type III bursts. Overall, with its impressive generalisation capability, SAM (HQ-SAM) can be a promising candidate for further optimisation and application in RFI and event detection tasks in radio astronomy.
Since August 2014, a monitoring survey at a frequency of 111 MHz has been conducted on the Large Phased Array (LPA) radio telescope of the P.N. Lebedev Physical Institute (LPI). We report the discovery of a bright pulse having a dispersion measure (DM) equal to 134.4 ± 2 pc cm–3, a peak flux density (Sp) equal to 20 ± 4 Jy and a half-width (We) equal to 211 ± 6 ms. The excessive DM of the pulse, after taking into account the MilkyWay contribution, is 114 pc cm–3 that indicates its extragalactic origin. Such value of DM corresponds to the luminosity distance 713 Mpc. The above parameters make the pulse to be a reliable candidate to the fast radio burst (FRB) event, and then it is the second FRB detected at such a large λ ∼ 2.7 m wavelength and the first one among non-repeating FRBs. The normalized luminosity Lν of the event, which we have designated as FRB 20190203, estimated under assumption that the whole excessive DM is determined by the intergalactic environment toward the host galaxy, is equal to ≃ 1034 erg s–1Hz–1. In addition to the study of radio data we analyzed data from the quasi-simultaneous observations of the sky in the high energy (≥ 80 keV) band by the omnidirectional detector SPI/ACS aboard the INTEGRAL orbital observatory (in order to look for a possible gamma-ray counterpart of FRB 20190203). We did not detect any transient events exceeding the background at a statistically significant level. In the INTEGRAL archive, the FRB 20190203 localization region has been observed many times with with a total exposure of ∼ 73.2 days. We have analyzed the data but were unable to find any reliable short gamma-ray bursts from the FRB 20190203 position. Finally we note that the observed properties of FRB 20190203 can be reproduced well in the framework of a maser synchrotron model operating in the far reverse shock (at a distance of ∼ 1015 cm) of a magnetar. However, triggering the burst requires a high conversion efficiency (at the level of 1%) of the shock wave energy into the radio emission.
We present a re-discovery of G278.94+1.35a as possibly one of the largest known Galactic supernova remnants (SNRs) – that we name Diprotodon. While previously established as a Galactic SNR, Diprotodon is visible in our new Evolutionary Map of the Universe (EMU) and GaLactic and Extragalactic All-sky MWA (GLEAM) radio continuum images at an angular size of $3{{{{.\!^\circ}}}}33\times3{{{{.\!^\circ}}}}23$, much larger than previously measured. At the previously suggested distance of 2.7 kpc, this implies a diameter of 157$\times$152 pc. This size would qualify Diprotodon as the largest known SNR and pushes our estimates of SNR sizes to the upper limits. We investigate the environment in which the SNR is located and examine various scenarios that might explain such a large and relatively bright SNR appearance. We find that Diprotodon is most likely at a much closer distance of $\sim$1 kpc, implying its diameter is 58$\times$56 pc and it is in the radiative evolutionary phase. We also present a new Fermi-LAT data analysis that confirms the angular extent of the SNR in gamma rays. The origin of the high-energy emission remains somewhat puzzling, and the scenarios we explore reveal new puzzles, given this unexpected and unique observation of a seemingly evolved SNR having a hard GeV spectrum with no breaks. We explore both leptonic and hadronic scenarios, as well as the possibility that the high-energy emission arises from the leftover particle population of a historic pulsar wind nebula.
The Gaia optical astrometric mission has measured the precise positions of millions of objects in the sky, including extragalactic sources also observed by Very Long Baseline Interferometry (VLBI). In the recent Gaia EDR3 release, an effect of negative parallax with a magnitude of approximately $-17$$\mu$as was reported, presumably due to technical reasons related to the relativistic delay model. A recent analysis of a 30-yr set of geodetic VLBI data (1993–2023) revealed a similar negative parallax with an amplitude of $-15.8 \pm 0.5$$\mu$as. Since both astrometric techniques, optical and radio, provide consistent estimates of this negative parallax, it is necessary to investigate the potential origin of this effect.
We developed the extended group relativistic delay model to incorporate the additional parallactic effect for radio sources at distances less than 1 Mpc and found that the apparent annual signal might appear due the non-orthogonality of the fundamental axes, which are defined by the positions of the reference radio sources themselves. Unlike the conventional parallactic ellipse, the apparent annual effect in this case appears as a circular motion for all objects independently of their ecliptic latitude. The measured amplitude of this circular effect is within a range of 10–15 $\mu$as that is consistent with the ICRF3 stability of the fundamental axis. This annual circular effect could also arise if a Gödel-type cosmological metric were applied, suggesting that, in the future, this phenomenon could be used to indicate global cosmic rotation.
In this study, the results obtained using GOES satellite X-ray data and MWO and WSO measurements of the solar magnetic field between 1976 and 2022 are compared and discussed. By analysing GOES satellite X-ray data in 47 different time periods of one month long, 7 500 solar flares are obtained, the flare equivalent duration distributions against the total duration of the flare are statistically modelled, and then their variation via time is examined. The variations of the model parameters such as the Plateau, which is considered as an indicator of the stellar saturation level in an observation season, and the flare timescales via time are examined. We noticed that the variation found in the solar magnetic field and the variation determined in the flare saturation levels are very similar. As a result, it is well known that the solar magnetic dipole moment measured from the solar poles steadily decreased from 1976 to 2022. We revealed that the solar X-ray flare energies are also generally decreasing in the same trend. This decrease is also evident in flare timescales, indicating that the geometry of solar magnetic loops is getting smaller over time.
With the low Earth orbit environment becoming increasingly populated with artificial satellites, rockets, and debris, it is important to understand the effects they have on radio astronomy. In this work, we undertake a multi-frequency, multi-epoch survey with two SKA-Low station prototypes located at the SKA-Low site, to identify and characterise radio frequency emission from orbiting objects and consider their impact on radio astronomy observations. We identified 152 unique satellites across multiple passes in low and medium Earth orbits from 1.6 million full-sky images across 13 selected ${\approx}1$ MHz frequency bands in the SKA-Low frequency range, acquired over almost 20 days of data collection. Our algorithms significantly reduce the rate of satellite misidentification, compared to previous work, validated through simulations to be $ \lt 1\%$. Notably, multiple satellites were detected transmitting unintended electromagnetic radiation, as well as several decommissioned satellites likely transmitting when the Sun illuminates their solar panels. We test alternative methods of processing data, which will be deployed for a larger, more systematic survey at SKA-Low frequencies in the near future. The current work establishes a baseline for monitoring satellite transmissions, which will be repeated in future years to assess their evolving impact on radio astronomy observations.
Galaxy Zoo is an online project to classify morphological features in extra-galactic imaging surveys with public voting. In this paper, we compare the classifications made for two different surveys, the Dark Energy Spectroscopic Instrument (DESI) imaging survey and a part of the Kilo-Degree Survey (KiDS), in the equatorial fields of the Galaxy And Mass Assembly (GAMA) survey. Our aim is to cross-validate and compare the classifications based on different imaging quality and depth. We find that generally the voting agrees globally but with substantial scatter, that is, substantial differences for individual galaxies. There is a notable higher voting fraction in favour of ‘smooth’ galaxies in the DESI+zoobot classifications, most likely due to the difference between imaging depth. DESI imaging is shallower and slightly lower resolution than KiDS and the Galaxy Zoo images do not reveal details such as disc features and thus are missed in the zoobot training sample. We check against expert visual classifications and find good agreement with KiDS-based Galaxy Zoo voting. We reproduce the results from Porter-Temple+ (2022), on the dependence of stellar mass, star formation, and specific star formation on the number of spiral arms. This shows that once corrected for redshift, the DESI Galaxy Zoo and KiDS Galaxy Zoo classifications agree well on population properties. The zoobot cross-validation increases confidence in its ability to compliment Galaxy Zoo classifications and its ability for transfer learning across surveys.
Fast radio burst (FRB) science primarily revolves around two facets: the origin of these bursts and their use in cosmological studies. This work follows from previous redshift–dispersion measure (z–DM) analyses in which we model instrumental biases and simultaneously fit population parameters and cosmological parameters to the observed population of FRBs. This sheds light on both the progenitors of FRBs and cosmological questions. Previously, we have completed similar analyses with data from the Australian Square Kilometer Array Pathfinder (ASKAP) and the Murriyang (Parkes) Multibeam system. In this manuscript, we use 119 FRBs with 29 associated redshifts by additionally modelling the Deep Synoptic Array (DSA) and the Five-hundred-metre Aperture Spherical radio Telescope (FAST). We also invoke a Markov chain Monte Carlo (MCMC) sampler and implement uncertainty in the Galactic DM contributions. The latter leads to larger uncertainties in derived model parameters than previous estimates despite the additional data and indicate that precise measurements of DM$_\textrm{ISM}$ will be important in the future. We provide refined constraints on FRB population parameters and derive a new constraint on the minimum FRB energy of log $E_{\mathrm{min}}$(erg)=39.47$^{+0.54}_{-1.28}$ which is significantly higher than bursts detected from strong repeaters. This result likely indicates a low-energy turnover in the luminosity function or may alternatively suggest that strong repeaters have a different luminosity function to single bursts. We also predict that FAST will detect 25–41% of their FRBs at $z \gtrsim 2$ and DSA will detect 2–12% of their FRBs at $z \gtrsim 1$.
The bright radio source, GLEAM J091734$-$001243 (hereafter GLEAM J0917$-$0012), was previously selected as a candidate ultra-high redshift ($z \gt 5$) radio galaxy due to its compact radio size and faint magnitude ($K(\mathrm{AB})=22.7$). Its redshift was not conclusively determined from follow-up millimetre and near-infrared spectroscopy. Here we present new HST WFC3 G141 grism observations which reveal several emission lines including [NeIII]$\lambda$3867, [NeV]$\lambda$3426 and an extended ($\approx 4.8\,$kpc), [OII]$\lambda$3727 line which confirm a redshift of $3.004\pm0.001$. The extended component of the [OII]$\lambda$3727 line is co-spatial with one of two components seen at 2.276 GHz in high resolution ($60\times 20\,$mas) Long Baseline Array data, reminiscent of the alignments seen in local compact radio galaxies. The BEAGLE stellar mass ($\approx 2\times 10^{11}\,\textit{M}_\odot$) and radio luminosity ($L_{\mathrm{500MHz}}\approx 10^{28}\,$W Hz$^{-1}$) put GLEAM J0917$-$0012 within the distribution of the brightest high-redshift radio galaxies at similar redshifts. However, it is more compact than all of them. Modelling of the radio jet demonstrates that this is a young, $\approx 50\,$kyr old, but powerful, $\approx 10^{39}\,$W, compact steep spectrum radio source. The weak constraint on the active galactic nucleus bolometric luminosity from the [NeV]$\lambda$3426 line combined with the modelled jet power tentatively implies a large black hole mass, $\ge 10^9\,\textit{M}_\odot$, and a low, advection-dominated accretion rate, i.e. an Eddington ratio $\le 0.03$. The [NeV]$\lambda$3426/[NeIII]$\lambda$3867 vs [OII]$\lambda$3727/[NeIII]$\lambda$3867 line ratios are most easily explained by radiative shock models with precursor photoionisation. Hence, we infer that the line emission is directly caused by the shocks from the jet and that this radio source is one of the youngest and most powerful known at cosmic noon. We speculate that the star-formation in GLEAM J0917$-$0012 could be on its way to becoming quenched by the jet.
Subdwarf B stars are a well-known class of hot, low-mass stars thought to be formed through interactions in stellar binary systems. While different formation channels for subdwarf B stars have been studied through a binary population synthesis approach, it has also become evident that the characteristics of the found populations depend on the initial set of assumptions that describe the sometimes poorly constrained physical processes, such as common envelope episodes or angular momentum loss during mass transfer events. In this work we present a parameter study of subdwarf B populations, including a novel analytic prescription that approximates the evolution of subdwarf B stars with hydrogen-rich outer shells, an element previously overlooked in rapid binary population synthesis. We find that all studied parameters strongly impact the properties of the population, with the possibility of igniting helium below the expected core-mass value near the tip of the red giant branch strongly affecting the total number of subdwarf B candidates. Critically, our newly proposed prescription for the evolution of subdwarf B stars with hydrogen-shells helps to reconcile theoretical predictions of surface gravity and effective temperature with observational results. Our prescription is useful in the context of rapid binary population synthesis studies and can be applied to other rapid binary population synthesis codes’ output.
The innermost region of the Milky Way harbors the central molecular zone (CMZ). This region contains a large amount of molecular gas but a poor star formation rate considering the densities achieved by the gas in this region. We used the arepo code to perform a hydrodynamic and star formation simulation of the galaxy, where a Ferrers bar was adiabatically introduced. During the stage of bar imposition, the bar strength excites density waves close to the inner Lindblad resonance guiding material towards the inner galaxy, driving the formation of a ring that we qualitatively associate with the CMZ. During the simulation, we identified that the ring passes three main phases, namely: formation, instability, and quasi-stationary stages. During the whole evolution, and particularly in the quasi-stationary stage, we observe that the ring is associated with the x2 family of periodic orbits. Additionally, we found that most of the star formation occurs during the ring formation stage, while it drastically decreases in the instability stage. Finally, we found that when the gas has settled in a stable x2 orbit, the star formation takes place mostly after the dense gas passes the apocentre, triggering the conveyor-belt mechanism described in previous studies.
Fast radio bursts (FRBs) are short-duration radio transients that occur at random times in host galaxies distributed all over the sky. Large field of view instruments can play a critical role in the blind search for rare FRBs. We present a concept for an all-sky FRB monitor using a compact all-sky phased array (CASPA), which can efficiently achieve an extremely large field of view of $\sim10^4$ square degrees. Such a system would allow us to conduct a continuous, blind FRB search covering the entire southern sky. Using the measured FRB luminosity function, we investigate the detection rate for this all-sky phased array and compare the result to a number of other proposed large field-of-view instruments. We predict a rate of a few FRB detections per week and determine the dispersion measure and redshift distributions of these detectable FRBs. This instrument is optimal for detecting FRBs in the nearby Universe and for extending the high-end of the FRB luminosity function through finding ultraluminous events. Additionally, this instrument can be used to shadow the new gravitational-wave observing runs, detect high-energy events triggered from Galactic magnetars and search for other bright, but currently unknown transient signals.
A key objective for upcoming surveys, and when re-analysing archival data, is the identification of variable stellar sources. However, the selection of these sources is often complicated by the unavailability of light curve data. Utilising a self-organising map (SOM), we demonstrate the selection of diverse variable source types from a catalogue of variable and non-variable SDSS Stripe 82 sources whilst employing only the median $u-g$, $g-r$, $r-i$, and $i-z$ photometric colours for each source as input, without using source magnitudes. This includes the separation of main sequence variable stars that are otherwise degenerate with non-variable sources ($u-g$,$g-r$) and ($r-i$,$i-z$) colour-spaces. We separate variable sources on the main sequence from all other variable and non-variable sources with a purity of $80.0\%$ and completeness of $25.1\%$, figures which can be modified depending on the application. We also explore the varying ability of the same method to simultaneously select other types of variable sources from the heterogeneous sample, including variable quasars and RR-Lyrae stars. The demonstrated ability of this method to select variable main sequence stars in colour-space holds promise for application in future survey reduction pipelines and for the analysis of archival data, where light curves may not be available or may be prohibitively expensive to obtain.
We report a novel pilot project to characterise intra-night optical variability (INOV) of an extremely rare type of quasar, which has recently been caught in the act of transiting from a radio-quiet to radio-loud state, on a decadal time scale. Such rare transitions may signify a recurrence, or conceivably the first switch-on of jet activity in optically luminous quasars. The newly formed jet could well be jittery and unsteady, both in power and direction. The optically brightest among such radio-state transition candidates, the quasar J0950+5128 ($z = 0.2142$), was monitored by us with dense sampling in the R-band, during 2020-21 in 6 sessions, each lasting $ \gt $ 4 hours. This is the first attempt to characterise the INOV properties associated with this recently discovered, extremely rarely observed phenomenon of quasar radio-state transition. The non-detection of INOV in any of the 6 sessions, down to the 1-2% level, amounts to a lack of evidence for a blazar-like optical activity, $\sim$ 2 years after its transition to radio-loud state was found. The only INOV feature detected in J0950+5128 during our observational campaign was a $\sim$ 0.15-mag spike lasting < 6 minutes, seen at 13.97 UT on 18-March-2021. We also report the available optical light curves of this quasar from the Zwicky Transient Facility survey, which indicate that it had experienced a phase of INOV activity around the time its transition to the radio-loud state was detected, however that phase did not sustain until the launch of our INOV campaign $\sim$ 2 years later.
We present a comprehensive analysis of simultaneous, long-term observations of blazar S5 0716+714, covering optical/UV, X-ray, and $\gamma$-ray wavelengths. All available observations of the source by Swift-UVOT/XRT and Fermi-LAT till January 2023 were used, and the spectra were fitted using power-law/log-parabola functions. A detailed correlation study between the best-fit parameters were performed, and our results suggest that the spectral changes observed during high flux states could be associated with the spectral energy distribution shifting towards the blue end. The flux distribution predominantly shows a log-normal/double log-normal behaviour, whereas the index distribution indicates a Gaussian or double Gaussian nature. As a Gaussian variation in the index of a power-law spectrum will result in a log-normal variation in the flux, the observed log-normal variability in blazars may be associated with Gaussian variation in the spectral indices. The observed normal/log-normal variations in indices/fluxes can again be interpreted through bluer when brighter behaviour of the source. Furthermore, the broadband SED during two distinct flux states can be successfully fitted by considering synchrotron, synchrotron self-Compton, and external Compton emission processes. The flux enhancement of the source is predominantly associated with an increase in the bulk Lorentz factor. Additionally, we find that the model curves corresponding to variations in the Lorentz factor have the potential to explain the observed correlations between the spectral parameters. Our study thereby concludes that the spectral variations of blazar S5 0716+714 are primarily associated with changes in the bulk Lorentz factor of the jet.
We present spectroscopic properties of 22 Ly$\alpha$ emitters (LAEs) at $z = 5.5 - 6.6$ with Ly$\alpha$ luminosity $\mathrm{log}( L_{\mathrm{Ly}\alpha} \, [\mathrm{erg} \, \mathrm{s}^{-1}]) = 42.4 - 43.5 $, obtained using VLT/MUSE as part of the Middle Ages Galaxy Properties with Integral Field Spectroscopy (MAGPI) survey. Additionally, we incorporate broad-band photometric data from the Subaru Hyper Suprime-Cam (HSC) Wide layer for 17 LAEs in our sample. The HSC-y band magnitudes show that our LAEs are UV-bright, with rest-frame absolute UV magnitudes $ -19.74 \leq \mathrm{M}_{\mathrm{UV}} \leq -23.27$. We find that the Ly$\alpha$ line width increases with Ly$\alpha$ luminosity, and this trend becomes more prominent at $z \gt 6$ where Ly$\alpha$ lines become significantly broadened ($\gtrsim+260 \, \mathrm{km}\, \mathrm{s}^{-1}$) at luminosities $\mathrm{log}( L_{\mathrm{Ly}\alpha} \, [\mathrm{erg} \, \mathrm{s}^{-1}]) \gt 43 $. This broadening is consistent with previous studies, suggesting that these sources are located inside larger ionised bubbles. We observe a slightly elevated ionising photon production efficiency estimated for LAEs at $z \gt 6$, which indicates that younger galaxies could be producing more ionising photons per UV luminosity. A tentative anti-correlation between ionising photon production efficiency and Ly$\alpha$ rest-frame equivalent width is noticed, which could indicate a time delay between production and escape of ionising photon primarily due to supernovae activity. Furthermore, we find a positive correlation between radius of ionised regions and Ly$\alpha$ line width, which again suggests that large ionised bubbles are created around these LAEs, which are allowing them to self-shield from the scattering effects of the intergalactic medium (IGM). We also detect two very closely separated LAEs at $z = 6.046$ (projected spatial distance between the cores is 15.92 kpc). This is the LAE pair with the smallest separation ever discovered in the reionisation epoch. The size of their respective bubbles suggests that they likely sit inside a common large ionised region. Such a closely separated LAE pair increases the size of ionised bubble, potentially allowing a boosted transmission of Ly$\alpha$ through neutral IGM and also supports an accelerated reionisation scenario.