We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Event Horizon Telescope (EHT) provides a unique opportunity to probe the physics of supermassive black holes through Very Large Baseline Interferometry (VLBI), such as the existence of the event horizon, the accretion processes as well as jet formation in Low Luminosity AGN (LLAGN). We build a theoretical model which includes an Advection Dominated Accretion Flow (ADAF) and a simple radio jet outflow. The predicted spectral energy distribution (SED) of this model can be compared to observations to get the best estimates of the model parameters. The model-predicted radial emission profiles at different frequency bands can be used to predict whether the inflow can be resolved by the EHT or other telescopes. We have applied this method to some nearby LLAGN such as M84, NGC 4594, NGC 4278 and NGC 3998. We also estimate the model parameters for each of them using high resolution data from different surveys.
A new metric tensor proposed by Howusu is presented. Problems associated with the metric tensor are pointed out. Some of the good aspects of the Howusu Metric are also outlined. It is argued that Howusu Metric holds some promise in generating healthy academic debate.
Asteroseismology of white dwarf stars has led to a number of interesting results pertaining to the long term evolution and present state of white dwarf interiors. I will review recent results and will give a not necessarily comprehensive view of the prospects for further progress in this area. Two – but only two white dwarf stars - have shown the expected cooling as they age. Careful observations of a few white dwarfs with rich pulsational properties reveal interior compositions as well as the thickness of their surface layers. A few very well observed stars have revealed changes in their pulsational spectra which we don’t understand yet.
Our view of the properties of extragalactic radio jets and the impact they have on the host galaxy has expanded in the recent years. This has been possible thanks to the data from new or upgraded radio telescopes. This review briefly summarises the current status of the field and describes some of the exciting recent results and the surprises they have brought. In particular, the physical properties of radio jets as function of their radio power will be discussed together with the advance made in understanding the life-cycle of radio sources. The evolutionary stage (e.g. newly born, dying, restarted) of the radio AGN can be derived from their morphology and properties of the radio spectra. The possibilities offered by the new generation of low-frequency radio telescopes make it possible to derive (at least to first order) the time-scale spent in each phase. The presence of a cycle of activity ensures a recurrent impact of the radio jets on their surrounding inter-stellar and inter-galactic medium and, therefore, their relevance for AGN feedback. The last part is dedicated to the recent results showing the effect of jets on the surrounding galactic medium. The predictions made by numerical simulations on the impact of a radio jet (and in particular a newly born jet) on a clumpy medium describe well what is seen by the observations. The high resolution studies of jet-driven outflows of cold gas (and molecular) has provided new important addition both in term of quantifying the impact of the outflows and their relevance for feedback as well as for providing an unexpected view of the physical conditions of the gas under these extreme conditions.
The motivation of the “unified model” is to explain the main properties of the large zoo of active galactic nuclei with a single physical object. The discovery of broad permitted lines in the polarized spectrum of type 2 Seyfert galaxies in the mid 80’s led to the idea of an obscuring torus, whose orientation with respect to our line of sight was the reason of the different optical spectra. However, after many years of observations with different techniques, including IR and mm interferometry, the resulting properties of the observed dust structures differ from the torus model that would be needed to explain the type 1 vs type 2 dichotomy. Moreover, in the last years, multi-frequency monitoring of active galactic nuclei has shown an increasing number of transitions from one type to the other one, which cannot be explained in terms of the simple orientation of the dusty structure surrounding the active galactic nucleus (AGN). The interrelations between the AGN and the host galaxy, as also shown in the Magorrian relation, suggest that the evolution of the host galaxy may also have an important role in the observed manifestation of the nuclei. As an example, the observed delay between the maximum star formation activity and the onset of the AGN activity, and the higher occurrence of type 2 nuclei in star forming galaxies, have suggested the possible evolutionary path from, e.g., H II → AGN2 → AGN1. In the next years the models of unification need to also consider this observational framework and not only simple orientation effects.
Bright quasars at low z have generally been found in massive, evolved host galaxies, consistent with formation at early epochs. However, deep, high resolution, multicolor imaging of some quasar hosts have found morphological evidence of tidal tails and colors indicative of active star formation. These results are consistent with theories of galaxy formation and evolution in which merger processes trigger the activation of the quasar phase, and energetic feedback is essential. Understanding the role the black hole population plays in the galaxy formation process is important, but imaging the host galaxies around bright quasars is difficult because of the contribution of the bright nuclei. Very high resolution, deep imaging is necessary to successfully remove the nuclear component. We made high-resolution near-infrared images of several bright z ˜ 0.3 BL Lacs with the Gemini Multi-Conjugate Adaptive Optics System (GeMS)/GSAOI in order to study their host galaxies. We will present the results of this imaging with the 1 arcmin AO-corrected field provided by GeMS/GSAOI and compare with available HST imaging available in the archive.
We report the results of 14 years of monitoring of G188.95+0.89 periodic 6.7 GHz methanol masers using the Hartebeesthoek 26-m radio telescope. G188.95+0.89 (S252, AFGL5180) is a radio-quiet methanol maser site that is often interpreted as precursors of ultra-compact HII regions or massive protostar sites. At least five bright spectral components were identified. The maser feature at 11.36 km s-1 was found to experience an exponential decay during the monitoring period. The millimetre continuum reveals two cores associated with the source.
We present photo-ionization and morpho-kinematic analyses of the ejecta of novae. The sample consists of ten novae belonging to the Fe II, He/N and hybrid classes. The Fe II class of novae in the sample have bipolar cone-like structures, with or without equatorial rings with inclination angle in the range of 40°–60°. The He/N novae have bullet-nose curve along with bipolar cone-like structures and equatorial rings with an inclination angle of ~80°. The hybrid nova in the sample is a bipolar frustum of prolate spheroid along with bipolar cone-like structures and equatorial rings with an inclination angle of 63°.
Compact objects are of great interest in astrophysical research. There are active research interests in understanding better various aspects of formation and evolution of these objects. In this paper we addressed some problems related to the compact objects mass limit. We employed Einstein field equations (EFEs) to derive the equation of state (EoS). With the assumption of high densities and low temperature of compact sources, the derived equation of state is reduced to polytropic kind. Studying the polytropic equations we obtained similar physical implications, in agreement to previous works. Using the latest version of Mathematica-11 in our numerical analysis, we also obtained similar results except slight differences in accuracy.
In previous works, the radio-X-ray slope in FRI radio galaxies is found to be steeper compared with that in low-luminosity AGNs, indicating different origin of the X-ray emission. Here we reinvestigate this point by compiling a sample of 13 low-excitation radio galaxies (LERG) from 3CR radio catalog of galaxies, where the central engine in LERG is accepted to be a radiatively inefficient accretion flow (RIAF). The core radio and X-ray emissions in all the objects of our sample are detected by VLA/VLBI/VLBA and Chandra/XMM-Newton, respectively. Surprisingly, a shallower slope of Lr – Lx relation () is given by our sample, which demonstrates that the X-ray emission in LERG may come from accretion disk rather than a jet as suggested by previous works. In addition, the slope in the fundamental plane ((log LR = 0.52 log LX + 0.84 log MBH + 10.84) of LERG is found to be well consistent with that reported by Merloni et al. (2003).
We consider four- and five-body problems with symmetrical masses (Caledonian problems). Families of periodic orbits originate from the collinear Schubart orbits. We present and discuss some of these periodic orbits.
The study of white dwarfs, the end stage of stellar evolution for more than 95% of stars, is critical to bettering our understanding of the late stages of the lives of low mass stars. In particular, the post main sequence evolution of binary star systems is complex, and the identification and analysis of double degenerate systems is a crucial step in constraining models of binary star systems. Binary white dwarfs in open star clusters are particularly useful because cluster parameters such as distance, metal content, and total system age are more tightly constrained than for field double degenerates. Here we use the precision astrometry from the Gaia Data Release 2 catalog to study two other white dwarfs which were identified as candidate double degenerates in the field of the open star cluster NGC 6633. One of the two objects, LAWDS 4, is found to have astrometric properties fully consistent with that of the cluster. In such a case, the object is significantly overluminous for a single white dwarf, strongly indicating binarity. The second candidate binary, LAWDS 7, appears to be inconsistent with cluster membership, though a more thorough analysis is necessary to properly quantify the probability. At present we are proceeding to model the photometric and spectroscopic data for both objects as if they were cluster member double degenerates. Results of this latter analysis are forthcoming. Our results will add crucial data to the study of binary star evolution in open star clusters.
I will describe a series of experiments designed to use measurements of the cold ISM content of quasars to constrain the effectiveness of AGN feedback. I will propose new star formation rate indicators and apply them to constrain the star formation rate in quasars.
Active Galactic Nuclei (AGN), accreting supermassive black holes at the centers of galaxies, are believed to produce powerful outflows – often observed as radio jets – which significantly influence the evolution of the surrounding galaxy and inter-galactic medium. However, how these jets – which are produced in the central parsecs of the AGN – impact gas on scales thousands to millions times larger is poorly understood. Doing so requires measuring the properties on all the relevant size scales. In this talk I will present initial results from the deepest-ever radio VLBI survey of an extragalactic field, whose milli-arcsecond angular resolution allows us to probe the central parsecs around these AGN. By comparing the radio properties of the detected radio jets with the multi-wavelength properties of their host galaxies, we are better to understand what galaxies generate powerful radio jets, and how do these outflows affect their host galaxies.
Line profiles can provide fundamental information on the physics of active galactic nuclei (AGN). In the case of narrow-line Seyfert 1 galaxies (NLS1s) this is of particular importance since past studies revealed how their permitted line profiles are well reproduced by a Lorentzian function instead of a Gaussian. This has been explained with different properties of the broad-line region (BLR), which may present more pronounced turbulent motions in NLS1s with respect to other AGN. We investigated the line profiles in a recent large NLS1 sample classified using SDSS, and we divided the sources into two subsamples according to their line shapes, Gaussian or Lorentzian. The line profiles seem to separate all the properties of NLS1s. Black hole mass, Eddington ratio, [OIII] luminosity, and Fe II strength are all very different in the Lorentzian and Gaussian samples, as well as their position on the quasar main sequence. We interpret this in terms of evolution within the class of NLS1s. The Lorentzian sources may be the youngest objects, while Gaussian profiles may be typically associated to more evolved objects. Further detailed spectroscopic studies are needed to fully confirm our hypothesis.
Feedback from active galactic nuclei (AGN) is thought to be key in shaping the life cycle of host galaxies by regulating star formation. Therefore, measuring the molecular gas reservoir out of which stars form is essential to understand the impact of AGN on star formation. In this talk I present an ongoing analysis to study the CO(J = 3−2) emission in a sample of 25 AGN at z ∼ 2 using ALMA observations. The CO properties of our AGN have been compared to normal (non-AGN) star-forming galaxies. The comparison between the two samples reveals that, on average, the CO luminosities of AGN at high stellar masses (log(M*/M⊙) > 11) are 0.5 dex lower than normal galaxies. We ascribe this difference to the AGN activity, which could be able to change the conditions of the gas through, e.g., excitation, heating or removal of CO.
We present the developed methods of digitization, image processing, reduction, and scientific data mining with the latest reference catalogs, which allowed us to obtain a good positional and photometric accuracy in B-band of 6,500 asteroids down to 17.5m from the Ukrainian Virtual Observatory database of astroplates. The archive includes FON-Kyiv, FON-Kitab, FON-Dushanbe sky surveys (1981–1996) and astroplates of the Baldone and Tautenburg observatories. For some of asteroids, observations are either completely absent or not enough over the certain time interval to the moments of their official discoveries (about 300 such objects were found). Positional observations during these time scales are highly useful for a more detailed study of the dynamics and orbital parameters of asteroids as well as the obtained photometric parameters are very complementary with present-day data for studying changes in brightness and light curves.
XDCPJ0044.0-2033 is one of the most massive galaxy cluster at z ∼1.6, for which a wealth of multi-wavelength photometric and spectroscopic data have been collected during the last years. I have reported on the properties of the galaxy members in the very central region (∼ 70kpc × 70kpc) of the cluster, derived through deep HST photometry, SINFONI and KMOS IFU spectroscopy, together with Chandra X-ray, ALMA and JVLA radio data.
In the core of the cluster, we have identified two groups of galaxies (Complex A and Complex B), seven of them confirmed to be cluster members, with signatures of ongoing merging. These galaxies show perturbed morphologies and, three of them show signs of AGN activity. In particular, two of them, located at the center of each complex, have been found to host luminous, obscured and highly accreting AGN (λ = 0.4−0.6) exhibiting broad Hα line. Moreover, a third optically obscured type-2 AGN, has been discovered through BPT diagram in Complex A. The AGN at the center of Complex B is detected in X-ray while the other two, and their companions, are spatially related to radio emission. The three AGN provide one of the closest AGN triple at z > 1 revealed so far with a minimum (maximum) projected distance of 10 kpc (40 kpc). The discovery of multiple AGN activity in a highly star-forming region associated to the crowded core of a galaxy cluster at z ∼ 1.6, suggests that these processes have a key role in shaping the nascent Brightest Cluster Galaxy, observed at the center of local clusters. According to our data, all galaxies in the core of XDCPJ0044.0-2033 could form a BCG of M* ∼ 1012Mȯ hosting a BH of 2 × 108−109Mȯ, in a time scale of the order of 2.5 Gyrs.
Low-Ionisation Nuclear Emission-line Regions (LINERs) are the least luminous and the most numerous among the local population of Active Galactic Nuclei (AGN). They can be classified as type-1 or type-2 if their optical spectra show or do not show, respectively, a broad component. It is associated with the presence of a Broad Line Region (BLR) in these systems. However, recent studies have proven that the classification of type-1 LINERs may be controversial, since space- and ground-based spectroscopy provide contradicting results on the presence of very broad components (Cazzoli et al.2018). We have studied the nuclear spectra of 9 type-2 LINERs with intermediate spectral resolution HST/STIS data. We present the results on our analysis of the different spectral components, and discuss the eventual presence of BLR components in type-2 LINER galaxies, together with the possible presence of outflows, both in comparison with type-1 LINERs. We have found a BLR component in 7 out of the 9 analysed objects within the HST/STIS data.
A significant fraction of white dwarfs possess a magnetic field with strengths ranging from a few kG up to about 1000 MG. However, the incidence of magnetism varies when the white dwarf population is broken down into different spectral types providing clues on the formation of magnetic fields in white dwarfs. Several scenarios for the origin of magnetic fields have been proposed from a fossil field origin to dynamo generation at various stages of evolution. Offset dipoles are often assumed sufficient to model the field structure, however time-resolved spectropolarimetric observations have revealed more complex structures such as magnetic spots or multipoles. Surface mapping of these field structures combined with measured rotation rates help distinguish scenarios involving single star evolution from other scenarios involving binary interactions. I describe key observational properties of magnetic white dwarfs such as age, mass, and field strength, and confront proposed formation scenarios with these properties.