We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Analytical electron microscopy was used to confirm the location of pillars of zirconia in pillared montmorillonite. Data show that the pillared clay is of “high” quality, with surface areas ranging from 200 to 250 m2/g and (001) spacings in the 17–18 Å range. The zirconia-rich pillars were observed using bright-field imaging, annular dark-field imaging, and energy-filtered imaging. The composition of the pillars was confirmed by performing nano-analysis using energy-dispersive X-ray spectroscopy and electron energy-loss spectroscopy. The pillars apparently have an irregular shape <50 Å in size. The shape and relatively large size of the pillars suggest that zirconia dispersion is not ideally distributed in this sample. This study is apparently the first report of electron microscopy observation of pillaring material in clays.
Nanoporous, high-purity magnesium nitride (Mg3N2) was synthesized with a liquid ammonia-based process, for potential applications in optoelectronics, gas separation and catalysis, since these applications require high material purity and crystallinity, which has seldom been demonstrated in the past. One way to evaluate the degree of crystalline near-range order and atomic environment is electron energy-loss spectroscopy (EELS) in a transmission electron microscope. However, there are hardly any data on Mg3N2, which makes identification of electron energy-loss near-edge structure (ELNES) features difficult. Therefore, we have studied nanoporous Mg3N2 with EELS in detail in comparison to EELS spectra of bulk Mg3N2, which was analyzed as a reference material. The N-K and Mg-K edges of both materials are similar. Despite having the same crystal structure, however, there are differences in fine-structural features, such as shifts and absences of peaks in the N-K and Mg-K edges of nanoporous Mg3N2. These differences in ELNES are attributed to coordination changes in nanoporous Mg3N2 caused by the significantly smaller crystallite size of 2–6 nm compared to the larger (25–125 nm) crystal size in a bulk material.
Valence Compton profiles (CPs) of multiwall (MWCNTs) and single-wall carbon nanotubes (SWCNTs) were obtained by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope, a technique known as electron Compton scattering from solids (ECOSS). The experimental MWCNT/SWCNT results were compared with that of graphite. Differences between the valence CPs of MWCNTs and SWCNTs were observed, and the SWCNT CPs indicate a greater delocalization of the ground-state charge density compared to graphite. The results clearly demonstrate the feasibility and potential of the ECOSS technique as a complementary tool for studying the electronic structure of materials with nanoscale spatial resolution.
Crystal structure and electronic structure of YMnO3 were investigated by X-ray diffraction and transmission electron microscopy related techniques. According to the density of states (DOS), the individual interband transitions to energy loss peaks in the low energy loss spectrum were assigned. The hybridization of O 2p with Mn 3d and Y 4d analyzed by the partial DOS was critical to the ferroelectric nature of YMnO3. From the simulation of the energy loss near-edge structure, the fine structure of O K-edge was in good agreement with the experimental spectrum. The valence state of Mn (+3) in YMnO3 was determined by a comparison between experiment and calculations.
Cutting-edge research on materials for lithium ion batteries regularly focuses on nanoscale and atomic-scale phenomena. Electron energy-loss spectroscopy (EELS) is one of the most powerful ways of characterizing composition and aspects of the electronic structure of battery materials, particularly lithium and the transition metal mixed oxides found in the electrodes. However, the characteristic EELS signal from battery materials is challenging to analyze when there is strong overlap of spectral features, poor signal-to-background ratios, or thicker and uneven sample areas. A potential alternative or complementary approach comes from utilizing the valence EELS features (<20 eV loss) of battery materials. For example, the valence EELS features in LiCoO2 maintain higher jump ratios than the Li–K edge, most notably when spectra are collected with minimal acquisition times or from thick sample regions. EELS maps of these valence features give comparable results to the Li–K edge EELS maps of LiCoO2. With some spectral processing, the valence EELS maps more accurately highlight the morphology and distribution of LiCoO2 than the Li–K edge maps, especially in thicker sample regions. This approach is beneficial for cases where sample thickness or beam sensitivity limit EELS analysis, and could be used to minimize electron dosage and sample damage or contamination.
A new approach is presented to introduce the fine structure of core-loss excitations into the electron energy-loss spectra of ionization edges by Monte Carlo simulations based on an optical oscillator model. The optical oscillator strength is refined using the calculated electron energy-loss near-edge structure by density functional theory calculations. This approach can predict the effects of multiple scattering and thickness on the fine structure of ionization edges. In addition, effects of the fitting range for background removal and the integration range under the ionization edge on signal-to-noise ratio are investigated.
Solid oxide fuel cells (SOFCs) are promising candidates for use in alternative energy technologies. A full understanding of the reaction mechanisms in these dynamic material systems is required to optimize device performance and overcome present limitations. Here, we show that in situ transmission electron microscopy (TEM) can be used to study redox reactions and ionic conductivity in SOFCs in a gas environment at elevated temperature. We examine model ultrathin half and complete cells in two environmental TEMs using off-axis electron holography and electron energy-loss spectroscopy. Our results from the model cells provide insight into the essential phenomena that are important for the operation of commercial devices. Changes in the activities of dopant cations in the solid electrolyte are detected during oxygen anion conduction, demonstrating the key role of dopants in electrolyte architecture in SOFCs.
To date, it is unclear whether chemical order (or disorder) is in any way connected to double exchange, electronic phase separation, or charge ordering (CO) in manganites. In this work, we carry out an atomic resolution study of the colossal magnetoresistant manganite La2−2xSr1+2xMn2O7 (LSMO). We combine aberration-corrected electron microscopy and spectroscopy with spectroscopic image simulations, to analyze cation ordering at the atomic scale in real space in a number of LSMO single crystals. We compare three different compositions within the phase diagram: a ferromagnetic metallic material (x=0.36), an insulating, antiferromagnetic charge ordered (AF-CO) compound (x=0.5), which also exhibits orbital ordering, and an additional AF sample (x=0.56). Detailed image simulations are essential to accurately quantify the degree of chemical ordering of these samples. We find a significant degree of long-range chemical ordering in all cases, which increases in the AF-CO range. However, the degree of ordering is never complete nor can it explain the strongly correlated underlying ordering phenomena. Our results show that chemical ordering over distinct crystallographic sites is not needed for electronic ordering phenomena to appear in manganites, and cannot by itself explain the complex electronic behavior of LSMO.
Diffusion bonding of TiAl alloys can be enhanced by the use of reactive nanolayer thin films as interlayers. Using these interlayers, it is possible to reduce the conventional bonding conditions (temperature, time, and pressure) and obtain sound and reliable joints. The microstructural characterization of the diffusion bond interfaces is a fundamental step toward understanding and identifying the bonding mechanisms and relating them to the strength of the joints. The interface of TiAl samples joined using Ni/Al nanolayers was characterized by transmission electron microscopy and scanning transmission electron microscopy. Microstructural characterization of the bond revealed that the interfaces consist of several thin layers of different composition and grain size (nanometric and micrometric). The bonding temperature (800, 900, or 1,000°C) determines the grain size and thickness of the layers present at the interface. Phase identification by high-resolution transmission electron microscopy combined with fast Fourier transform and electron energy-loss spectroscopy analyses reveals the presence of several intermetallic compounds: AlTiNi, NiAl, and Al2TiNi. For bonds produced at 800 and 900°C, nanometric grains of Ti were detected at the center of the interface.
Tungsten oxide (WO3) nanostructures receive sustained interest for a wide variety of applications, and especially for its usage as a photocatalyst. It is therefore important to find suitable methods allowing for its easy and inexpensive large scale production. Tungstite (WO3·H2O) nanoparticles were synthesized using a simple and inexpensive low temperature and low pressure hydrothermal (HT) method. The precursor solution used for the HT process was prepared by adding hydrochloric acid to diluted sodium tungstate solutions (Na2WO4·2H2O) at temperatures below 5 °C and then dissolved using oxalic acid. This HT process yielded tungstite (WO3·H2O) nanoparticles with the orthorhombic structure. A heat treatment at temperatures at or above 300 °C resulted in a phase transformation to monoclinic WO3, while preserving the nanoparticles morphology. The production of WO3 nanoparticles using this method is therefore a three step process: protonation of tungstate ions, crystallization of tungstite, and phase transformation to WO3. Furthermore, this process can be tailored. For example, we show that WO3 can be doped with cesium and that nanorods can also be obtained. The products were characterized using powder x-ray diffraction, transmission electron microscopy (including electron energy-loss spectroscopy and electron diffraction), and x-ray photoelectron spectroscopy.
Traditional electron microscopy techniques such as bright-field imaging provide poor contrast for organic films and identification of structures in amorphous material can be problematic, particularly in high-performance organic solar cells. By combining energy-filtered corrected transmission electron microscopy, together with electron energy loss and X-ray energy-dispersive hyperspectral imaging, we have imaged PTB7/PC61BM blended polymer optical photovoltaic films, and were able to identify domains ranging in size from several hundred nanometers to several nanometers in extent. This work verifies that microstructural domains exist in bulk heterojunctions in PTB7/PC61BM polymeric solar cells at multiple length scales and expands our understanding of optimal device performance providing insight for the design of even higher performance cells.
In this work we study the interfaces between the Mott insulator LaMnO3 (LMO) and the band insulator SrTiO3 (STO) in epitaxially grown superlattices with different thickness ratios and different transport and magnetic behaviors. Using atomic resolution electron energy-loss spectral imaging, we analyze simultaneously the structural and chemical properties of these interfaces. We find changes in the oxygen octahedral tilts within the LaMnO3 layers when the thickness ratio between the manganite and the titanate layers is varied. Superlattices with thick LMO and ultrathin STO layers present unexpected octahedral tilts in the STO, along with a small amount of oxygen vacancies. On the other hand, thick STO layers exhibit undistorted octahedra while the LMO layers present reduced O octahedral distortions near the interfaces. These findings are discussed in view of the transport and magnetic differences found in previous studies.
An electron energy-loss spectroscopic (EELS) study using a monochromator transmission electron microscope was conducted for investigating the dielectric response of isolated single-walled carbon nanotubes (SWCNTs) owing to interband transitions characteristic to chiral structures. Individual chiral structures of the SWCNTs were determined by electron diffraction patterns. EELS spectra obtained from isolated SWCNTs showed sharp peaks below π plasmon energy of 5 eV, which were attributed to the characteristic interband transitions of SWCNTs. In addition, unexpected shoulder structures were observed at the higher energy side of each sharp peak. Simulations of EELS spectra by using the continuum dielectric theory showed that an origin of the shoulder structures was because of the surface dipole mode along the circumference direction of the SWCNT. It was noticed that the electron excitation energies obtained by EELS were slightly higher than those of optical studies, which might be because of the inelastic scattering process with the momentum transfers. To interpret the discrepancy between the EELS and optical experiments, it is necessary to conduct more accurate simulation including the first principle calculation for the band structure of SWCNTs.
A solid solution of Nd1−xSrxCoO3−δ (with x=0, 1/3, 2/3, and 1) has been prepared and characterized by a combination of X-ray diffraction, electron microscopy, and electron energy-loss spectroscopy (EELS). The structural characterization indicates that Nd-doped materials present an orthorhombic symmetry with a=√2xap, b=√2xap, and c=2xap (ap refers to lattice parameter of simple cubic perovskite), while SrCoO2.5 has an orthorhombic symmetry with a=√2xap, b=4xap, and c=√2xap. EELS analysis revealed that Co are in 3+ oxidation states but in different spin configurations.
This article presents a (scanning) transmission electron microscopy (TEM) study of Mn valency and its structural origin at La0.7Sr0.3MnO3/SrTiO3(0 0 1) thin film interfaces. Mn valency deviations can lead to a breakdown of ferromagnetic order and thus lower the tunneling magnetoresistance of tunnel junctions. Here, at the interface, a Mn valency reduction of 0.16 ± 0.10 compared to the film interior and an additional feature at the low energy-loss flank of the Mn-L3 line have been observed. The latter may be attributed to an elongation of the (0 0 1) plane spacing at the interface detected by geometrical phase analysis of high-resolution images. Regarding the interface geometry, high-resolution high-angle annular dark-field scanning TEM images reveal an atomically sharp interface in some regions whereas the transition appears broadened in others. This can be explained by the presence of steps. The performed measurements indicate that, among the various structure-related influences on the valency, the atomic layer termination and the local oxygen content are most important.
Improvements in instrumentation for energy-dispersive X-ray
microanalysis (EDX) and electron energy-loss spectroscopy (EELS)
have underlined the need for suitable standards for measuring
performance. We report the results from several laboratories
that were supplied with a test specimen consisting of a thin
film of nickel oxide supported on a molybdenum grid. The
Ni-Kα/Mo-Kα count ratio was used as
an indication of number of stray electrons and/or X-rays
in the TEM column; the Ni-Kα peak/background
ratio provided a measure of the total background in the EDX
spectrum, including bremsstrahlung contributions and the effect
of detector electronics. By providing values typical of current
instrumentation, the results illustrate how the test specimen
can be used to evaluate TEM/EDX systems prior to purchase,
during installation, and (periodically) during operation. The
NiO films were also used to test EELS acquisition and
quantification procedures: measured Ni/O elemental ratios
were all within 10% of stoichiometry.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.