Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-16T03:24:43.844Z Has data issue: false hasContentIssue false

Atomic Scale Studies of La/Sr Ordering in Colossal Magnetoresistant La2−2xSr1+2xMn2O7 Single Crystals

Published online by Cambridge University Press:  29 September 2014

Manuel A. Roldan*
Affiliation:
Dpto. Física Aplicada III, Universidad Complutense de Madrid, 28040 Madrid, Spain Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831, USA
Mark P. Oxley
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37212, USA
Qing’an Li
Affiliation:
Argonne National Laboratory, Materials Science Division, Argonne, IL 60439, USA
Hong Zheng
Affiliation:
Argonne National Laboratory, Materials Science Division, Argonne, IL 60439, USA
K. E. Gray
Affiliation:
Argonne National Laboratory, Materials Science Division, Argonne, IL 60439, USA
J. F. Mitchell
Affiliation:
Argonne National Laboratory, Materials Science Division, Argonne, IL 60439, USA
Stephen J. Pennycook
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA
María Varela
Affiliation:
Dpto. Física Aplicada III, Universidad Complutense de Madrid, 28040 Madrid, Spain Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831, USA
*
*Corresponding author. [email protected]
Get access

Abstract

To date, it is unclear whether chemical order (or disorder) is in any way connected to double exchange, electronic phase separation, or charge ordering (CO) in manganites. In this work, we carry out an atomic resolution study of the colossal magnetoresistant manganite La2−2xSr1+2xMn2O7 (LSMO). We combine aberration-corrected electron microscopy and spectroscopy with spectroscopic image simulations, to analyze cation ordering at the atomic scale in real space in a number of LSMO single crystals. We compare three different compositions within the phase diagram: a ferromagnetic metallic material (x=0.36), an insulating, antiferromagnetic charge ordered (AF-CO) compound (x=0.5), which also exhibits orbital ordering, and an additional AF sample (x=0.56). Detailed image simulations are essential to accurately quantify the degree of chemical ordering of these samples. We find a significant degree of long-range chemical ordering in all cases, which increases in the AF-CO range. However, the degree of ordering is never complete nor can it explain the strongly correlated underlying ordering phenomena. Our results show that chemical ordering over distinct crystallographic sites is not needed for electronic ordering phenomena to appear in manganites, and cannot by itself explain the complex electronic behavior of LSMO.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, L.J., Findlay, S.D., Oxley, M.P. & Rossouw, C.J. (2003). Lattice-resolution contrast from a focused coherent electron probe. Part I. Ultramicroscopy 96, 4763.Google Scholar
Arima, T., Akahoshi, D., Oikawa, K., Kamiyama, T., Uchida, M., Matsui, Y. & Tokura, Y. (2002). Change in charge and orbital alignment upon antiferromagnetic transition in the A-site-ordered perovskite manganese oxide RBaMn2O6 (R=Tb and Sm). Phys Rev B 66, 140408, 1–4.CrossRefGoogle Scholar
Battle, P.D., Green, M.A., Laskey, N.S., Milburn, J.E., Murphy, L., Rosseinsky, M.J., Sullivan, S.P. & Vente, J.F. (1997). Layered Ruddlesden−Popper manganese oxides: Synthesis and cation ordering. Chem Mater 9, 552559.Google Scholar
Bonn, D.A. (2006). Are high-temperature superconductors exotic? Nat Phys 2, 159168.Google Scholar
Bosman, M., Watanabe, M., Alexander, D.T.L. & Keast, V.J. (2006). Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. Ultramicroscopy 106, 10241032.Google Scholar
Dagotto, E. (2005). Complexity in strongly correlated electronic systems. Science 309, 257262.Google Scholar
Dagotto, E., Hotta, T. & Moreo, A. (2001). Colossal magnetoresistant materials: The key role of phase separation. Phys Rep 344, 1153.Google Scholar
Egerton, R.F. (1986). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Plenum Press. pp. 301–402.Google Scholar
Goodenough, J.B. (1955). Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3 . Phys Rev 100, 564573.Google Scholar
Imada, M., Fujimori, A. & Tokura, Y. (1998). Metal-insulator transitions. Rev Mod Phys 70, 10391263.Google Scholar
Israel, C., Calderon, M.J. & Mathur, N.D. (2007). The current spin on manganites. Mater Today 10, 2432.Google Scholar
Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R. & Chen, L.H. (1994). Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413415.Google Scholar
Kimura, T., Tomioka, Y., Kuwahara, H., Asamitsu, A., Tamura, M. & Tokura, Y. (1996). Interplane tunneling magnetoresistance in a layered manganite crystal. Science 274, 16981701.Google Scholar
Kubota, M., Fujioka, H., Hirota, K., Ohoyama, K., Moritono, Y., Yoshizawa, H. & Endoh, Y. (2000). Relation between crystal and magnetic structures of layered manganite La2-2xSr1+2xMn2O7 (0.30≤x≤0.50). J Phys Soc Jpn 69, 16061609.Google Scholar
Li, Q., Gray, K.E., Zheng, H., Claus, H., Rosenkranz, S., Ancona, S.N., Osborn, R., Mitchell, J.F., Chen, Y. & Lynn, J.W. (2007). Reentrant orbital order and the true ground state of LaSr2Mn2O7. Phys Rev Lett 98(167201), 14.Google Scholar
Mitchell, J.F., Argyriou, D.N., Berger, A., Gray, K.E., Osborn, R. & Welp, U. (2001). Spin, charge, and lattice states in layered magnetoresistive oxides. J Phys Chem B 105, 1073111052.Google Scholar
Oxley, M.P. & Allen, L.J. (1998). Delocalization of the effective interaction for inner-shell ionization in crystals. Phys Rev B 57, 32733282.Google Scholar
Salomon, M.B. & Jaime, M. (2001). The physics of manganites: Structure and transport. Rev Mod Phys 73, 583628.Google Scholar
Seshadri, R., Hervieu, M., Martin, C., Maignan, A., Domenges, B. & Raveau, B. (1997a). Study of the layered magnetoresistive perovskite La1.2Sr1.8Mn2O7 by high-resolution electron microscopy and synchrotron X-ray powder diffraction. Chem Mater 9, 17781787.Google Scholar
Seshadri, R., Martin, C., Hervieu, M. & Raveau, B. (1997b). Structural evolution and electronic properties of La1+xSr2-xMn2O7 . Chem Mater 9, 270277.Google Scholar
Schiffer, P., Ramirez, A.P., Bao, W. & Cheong, S.W. (1995). Low temperature magnetoresistance and the magnetic phase diagram of La1-xCaxMnO3 . Phys Rev Lett 75, 33363339.Google Scholar
Varela, M., Gazquez, J. & Pennycook, S.J. (2012). STEM-EELS imaging of complex oxides and interfaces. MRS Bulletin 37, 2935.Google Scholar
Zheng, H., Li, Q.A., Gray, K.E. & Mitchell, J.F. (2008). Charge and orbital ordered phases of La2−2xSr1+2xMn2O7−δ . Phys Rev B 78(155103), 17.CrossRefGoogle Scholar