We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, existence criteria for multiple solutions of periodic boundary value problems for the first-order difference equation are established by using the Leggett–Williams multiple fixed point theorem and fixed point theorem of cone expansion and compression. Two examples are also given to illustrate the main results.
Let Aq=k〈x,y〉/(x2,xy+qyx,y2) be the quantum exterior algebra over a field k with , and let Λq be the ℤ2×ℤ2-Galois covering of Aq. In this paper the minimal projective bimodule resolution of Λq is constructed explicitly, and from it we can calculate the k-dimensions of all Hochschild homology and cohomology groups of Λq. Moreover, the cyclic homology of Λq can be calculated in the case where the underlying field is of characteristic zero.
Pseudodifferential operators are formal Laurent series in the formal inverse ∂−1 of the derivative operator ∂ whose coefficients are holomorphic functions on the Poincaré upper half-plane. Given a discrete subgroup Γ of SL(2,ℝ), automorphic pseudodifferential operators for Γ are pseudodifferential operators that are Γ-invariant, and they are closely linked to Jacobi-like forms and modular forms for Γ. We construct linear maps from the space of automorphic pseudodifferential operators and from the space of Jacobi-like forms for Γ to the cohomology space of the group Γ, and prove that these maps are compatible with the respective Hecke operator actions.
We derive upper Gaussian bounds for the heat kernel on complete, noncompact locally symmetric spaces M=Γ∖X with nonpositive curvature. Our bounds contain the Poincaré series of the discrete group Γ and therefore we also provide upper bounds for this series.
Let α be a formation of finite groups which is closed under subgroups and group extensions and which contains the formation of solvable groups. Let G be any finite group. We state and prove equivalences between conditions on chief factors of G and structural characterizations of the α-residual and theα-radical of G. We also discuss the connection of our results to the generalized Fitting subgroup of G.
Let ρ be a supernilpotent radical. Let ρ* be the class of all rings A such that either A is a simple ring in ρ or the factor ring A/I is in ρ for every nonzero ideal I of A and every minimal ideal M of A is in ρ. Let be the lower radical determined by ρ* and let ρφ denote the upper radical determined by the class of all subdirectly irreducible rings with ρ-semisimple hearts. Le Roux and Heyman proved that is a supernilpotent radical with and they asked whether if ρ is replaced by β, ℒ , 𝒩 or 𝒥 , where β, ℒ , 𝒩 and 𝒥 denote the Baer, the Levitzki, the Koethe and the Jacobson radical, respectively. In the present paper we will give a negative answer to this question by showing that if ρ is a supernilpotent radical whose semisimple class contains a nonzero nonsimple * -ring without minimal ideals, then is a nonspecial radical and consequently . We recall that a prime ring A is a * -ring if A/I is in β for every .
Let ϕ:D→D and ψ:D→ℂ be analytic maps. These induce a weighted composition operator ψCϕ acting between weighted Bloch type spaces. Under some assumptions on the weights we give a necessary as well as a sufficient condition when such an operator is continuous.
Let 𝒯X be the full transformation semigroup on a set X and E be a nontrivial equivalence on X. Write then TE(X) is a subsemigroup of 𝒯X. In this paper, we endow TE(X) with the so-called natural order and determine when two elements of TE(X) are related under this order, then find out elements of TE(X) which are compatible with ≤ on TE(X). Also, the maximal and minimal elements and the covering elements are described.
Generating functions are used to derive formulas for the number of representations of a positive integer by each of the quadratic forms x12+x22+x32+2x42, x12+2x22+2x32+2x42, x12+x22+2x32+4x42 and x12+2x22+4x32+4x42. The formulas show that the number of representations by each form is always positive. Some of the analogous results involving sums of triangular numbers are also given.
This paper characterizes the K-analyticity-framedness in ℝX for Cp(X) (the space of real-valued continuous functions on X with pointwise topology) in terms of Cp(X). This is used to extend Tkachuk’s result about the K-analyticity of spaces Cp(X) and to supplement the Arkhangel ′skiĭ–Calbrix characterization of σ-compact cosmic spaces. A partial answer to an Arkhangel ′skiĭ–Calbrix problem is also provided.
Using Ahlfors’ theory of covering surfaces, we prove the existence theorem for the T direction for algebroid functions dealing with multiple values which extends the results proved by Guo, Zheng and Ng and answers a question by Wang, Giao and the present authors.
We establish that the elliptic equation defined in an exterior domain of ℝn, n≥3, has a positive solution which decays to 0 as under quite general assumptions upon f and g.
In this work, we consider the periodic boundary value problem where a,c∈L1(0,T) and f is a Carathéodory function. An existence theorem for positive periodic solutions is proved in the case where the associated Green function is nonnegative. Our result is valid for systems with strong singularities, and answers partially the open problem raised in Torres [‘Weak singularities may help periodic solutions to exist’, J. Differential Equations232 (2007), 277–284].
We give some general results concerning continuity of measurable homomorphisms of topological groups. As a consequence we show that a Christensen measurable homomorphism of a Polish abelian group into a locally compact topological group is continuous. We also obtain similar results for the universally measurable homomorphisms and the homomorphisms that have the Baire property.