Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-18T14:04:10.803Z Has data issue: false hasContentIssue false

HOCHSCHILD (CO)HOMOLOGY OF ℤ2×ℤ2-GALOIS COVERINGS OF QUANTUM EXTERIOR ALGEBRAS

Published online by Cambridge University Press:  01 August 2008

HOU BO
Affiliation:
School of Mathematics and Computer Science, Hubei University, Wuhan 430062, PR China (email: [email protected])
XU YUNGE*
Affiliation:
School of Mathematics and Computer Science, Hubei University, Wuhan 430062, PR China (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let Aq=kx,y〉/(x2,xy+qyx,y2) be the quantum exterior algebra over a field k with , and let Λq be the ℤ2×ℤ2-Galois covering of Aq. In this paper the minimal projective bimodule resolution of Λq is constructed explicitly, and from it we can calculate the k-dimensions of all Hochschild homology and cohomology groups of Λq. Moreover, the cyclic homology of Λq can be calculated in the case where the underlying field is of characteristic zero.

Type
Research Article
Copyright
Copyright © 2008 Australian Mathematical Society

References

[1]Assem, I. and de la Peña, J. A., ‘The fundamental groups of a triangular algebra’, Comm. Algebra 24 (1996), 187208.CrossRefGoogle Scholar
[2]Auslander, M., Reiten, I. and Smalø, S. O., Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, 36 (Cambridge University Press, Cambridge, 1995).CrossRefGoogle Scholar
[3]Avramov, L. L. and Vigueé-Poirrier, M., ‘Hochschild homology criteria for smoothness’, Int. Math. Res. Not. 1 (1992), 1725.CrossRefGoogle Scholar
[4]Beilinson, A., Ginsburg, V. and Soergel, W., ‘Koszul duality patterns in representation theory’, J. Amer. Math. Soc. 9 (1996), 473527.CrossRefGoogle Scholar
[5]Buchweitz, R. O., Green, E. L., Madsen, D. and Solberg, Ø., ‘Finite Hochschild cohomology without finite global dimension’, Math. Res. Lett. 12 (2005), 805816.CrossRefGoogle Scholar
[6]Butler, M. C. R. and King, A. D., ‘Minimal resolutions of algebras’, J. Algebra 212 (1999), 323362.CrossRefGoogle Scholar
[7]Cartan, H. and Eilenberg, S., Homological algebra (Princeton University Press, Princeton, NJ, 1956).Google Scholar
[8]Cibils, C., ‘Rigid monomial algebras’, Math. Ann. 289 (1991), 95109.CrossRefGoogle Scholar
[9]Cibils, C. and Redondo, M. J., ‘Cartan–Leray spectral sequence for Galois coverings of categories’, J. Algebra 284 (2005), 310325.CrossRefGoogle Scholar
[10]Cibils, C. and Marcos, E. N., ‘Skew category, Galois covering and smash product of a category over a ring’, Proc. Amer. Math. Soc. 134 (2006), 3950.CrossRefGoogle Scholar
[11]Cibils, C. and Solotar, A., ‘Galois coverings, Morita equivalence and smash extensions of categories over a field’, Doc. Math. 11 (2006), 143159.CrossRefGoogle Scholar
[12]Cohen, M. and Montgomery, S., ‘Group-graded rings, smash products, and group actions’, Trans. Amer. Math. Soc. 282 (1984), 237258.CrossRefGoogle Scholar
[13]Gabriel, P., The universal cover of a representation-finite algebra, Lecture Notes in Mathematics, 903 (Springer, Berlin, 1981).CrossRefGoogle Scholar
[14]Gerstenhaber, M., ‘On the deformation of rings and algebras’, Ann. Math. 79 (1964), 59103.CrossRefGoogle Scholar
[15]Green, E. L., Hartman, G., Marcos, E. N. and Solberg, Ø., ‘Resolutions over Koszul algebras’, Arch. Math. 85(2) (2005), 118127.CrossRefGoogle Scholar
[16]Han, Y., ‘Hochschild (co)homology dimension’, J. London Math. Soc. 73(2) (2006), 657668.CrossRefGoogle Scholar
[17]Han, Y. and Zhao, D. K., ‘Construction of Koszul algebras by finite Galois covering’, Preprint, 2006, math.RA/0605773.Google Scholar
[18]Happel, D., Hochschild cohomology of finite-dimensional algebras, Lecture Notes in Mathematics, 1404 (Springer, Berlin, 1989), pp. 108126.Google Scholar
[19]Igusa, K., ‘Notes on the no loop conjecture’, J. Pure Appl. Algebra 69 (1990), 161176.CrossRefGoogle Scholar
[20]Liu, S. P. and Schulz, R., ‘The existence of bounded infinite DTr-orbits’, Proc. Amer. Math. Soc. 122 (1994), 10031005.Google Scholar
[21]Loday, J. L., Cyclic Homology. Appendix E by Mariá O. Ronco. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), 301 (Springer, Berlin, 1992).CrossRefGoogle Scholar
[22]Martins Ma, I. R. and de la Peña, J. A., ‘Comparing the simplicial and the Hochschild cohomologies of a finite-dimensional algebra’, J. Pure Appl. Algebra 138(1) (1999), 4558.CrossRefGoogle Scholar
[23]Schulz, R., ‘A non-projective module without self-extensions’, Arch. Math. 62 (1994), 497500.CrossRefGoogle Scholar
[24]Sköldberg, E., ‘The Hochschild homology of the truncated and quadratic monomial algebras’, J. London Math. Soc. 59(2) (1999), 7686.CrossRefGoogle Scholar
[25]Skowroński, A., ‘Simply connected algebras and Hochschild cohomology’, Proc. ICRA IV (Ottawa, 1992), Can. Math. Soc. Proc. 14 (1993), 431447.Google Scholar
[26]Skowroński, A. and Yamagata, K., ‘Socle deformations of self-injective algebras’, J. London Math. Soc. 72 (1996), 545566.CrossRefGoogle Scholar
[27]Xu, Y. G. and Chen, Y., ‘Hochschild homology groups of generalized exterior algebras with two variables’, Acta Math. Sinica (Chin. Ser.) 49(5) (2006), 10911098.Google Scholar