Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T15:20:29.541Z Has data issue: false hasContentIssue false

Social affordances: Is the mirror neuron system involved?

Published online by Cambridge University Press:  25 July 2013

Guillaume Dezecache
Affiliation:
Laboratory of Cognitive Neuroscience (LNC) – INSERM U960 & IEC – Ecole Normale Superieure (ENS), 75005 Paris, France. [email protected]@ens.frhttp://www.grezes.ens.fr/people.php?id=7http://www.grezes.ens.fr/people.php?id=1
Laurence Conty
Affiliation:
Laboratory of Psychopathology and Neuropsychology – LPN EA2027, Université Paris 8, 93526 Saint-Denis, France. [email protected]://sites.google.com/site/laurenceconty/
Julie Grèzes
Affiliation:
Laboratory of Cognitive Neuroscience (LNC) – INSERM U960 & IEC – Ecole Normale Superieure (ENS), 75005 Paris, France. [email protected]@ens.frhttp://www.grezes.ens.fr/people.php?id=7http://www.grezes.ens.fr/people.php?id=1

Abstract

We question the idea that the mirror neuron system is the substrate of social affordances perception, and we suggest that most of the activity seen in the parietal and premotor cortex of the human brain is independent of mirroring activity as characterized in macaques, but rather reflects a process of one's own action specification in response to social signals.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bourgeois, P. & Hess, U. (2008) The impact of social context on mimicry. Biological Psychology 77(3):343–52.CrossRefGoogle ScholarPubMed
Cisek, P. (2007) Cortical mechanisms of action selection: The affordance competition hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences 362(1485):1585–99. Available at: http://dx.doi.org/10.1098/rstb.2007.2054.Google Scholar
Cisek, P. & Kalaska, J. F. (2010) Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience 33:269–98. Available at: http://dx.doi.org/10.1146/annurev.neuro.051508.135409.Google Scholar
Conty, L., Dezecache, G., Hugueville, L. & Grèzes, J. (2012) Early binding of gaze, gesture, and emotion: Neural time course and correlates. The Journal of Neuroscience 32(13):4531–39. doi:10.1523/JNEUROSCI.5636-11.2012.CrossRefGoogle Scholar
Gallese, V., Fadiga, L., Fogassi, L. & Rizzolatti, G. (1996) Action recognition in the premotor cortex. Brain 119(Pt 2):593609.Google Scholar
Hess, U., Adams, R. B. & Kleck, R. E. (2007) Looking at you or looking elsewhere: The influence of head orientation on the signal value of emotional facial expressions. Motivation and Emotion 31(2):137–44.CrossRefGoogle Scholar
Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M. & Fried, I. (2010) Single-neuron responses in humans during execution and observation of actions. Current Biology 20(8):750–56.Google Scholar
Rizzolatti, G., Fogassi, L. & Gallese, V. (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience 2(9):661–69.CrossRefGoogle ScholarPubMed
Sander, D., Grafman, J. & Zalla, T. (2003) The human amygdala: An evolved system for relevance detection. Reviews in the Neurosciences 14(4):303–16.Google Scholar