Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T20:28:47.490Z Has data issue: false hasContentIssue false

A challenge for predictive coding: Representational or experiential diversity?

Published online by Cambridge University Press:  19 June 2020

Martina G. Vilas
Affiliation:
Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, 60322 Frankfurt am Main, Germany. [email protected]@ae.mpg.de martinagvilas.github.io aesthetics.mpg.de/en/the-institute/people/lucia-melloni-en.html
Lucia Melloni
Affiliation:
Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, 60322 Frankfurt am Main, Germany. [email protected]@ae.mpg.de martinagvilas.github.io aesthetics.mpg.de/en/the-institute/people/lucia-melloni-en.html Department of Neurology, NYU Comprehensive Epilepsy Center, School of Medicine, New York University, New York, NY 10016

Abstract

To become a unifying theory of brain function, predictive processing (PP) must accommodate its rich representational diversity. Gilead et al. claim such diversity requires a multi-process theory, and thus is out of reach for PP, which postulates a universal canonical computation. We contend this argument and instead propose that PP fails to account for the experiential level of representations.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auksztulewicz, R., Schwiedrzik, C. M., Thesen, T., Doyle, W., Devinsky, O., Nobre, A. C., Schroeder, C. E., Friston, K. J. & Melloni, L. (2018) Not all predictions are equal: “What” and “when” predictions modulate activity in auditory cortex through different mechanisms. Journal of Neuroscience 38(40):8680–93.CrossRefGoogle Scholar
Friston, K. & Buzsáki, G. (2016) The functional anatomy of time: What and when in the brain. Trends in Cognitive Sciences 20(7):500–11.CrossRefGoogle Scholar
Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P. & Pezzulo, G. (2017a) Active inference: A process theory. Neural Computation 29(1):149.CrossRefGoogle Scholar
Friston, K. J., Rosch, R., Parr, T., Price, C. & Bowman, H. (2018) Deep temporal models and active inference. Neuroscience & Biobehavioral Reviews 90:486501.CrossRefGoogle ScholarPubMed
Griffiths, T. L., Chater, N., Kemp, C., Perfors, A. & Tenenbaum, J. B. (2010) Probabilistic models of cognition: Exploring representations and inductive biases. Trends in Cognitive Sciences 14(8):357–64. Available at: http://doi.org/10.1016/j.tics.2010.05.004.CrossRefGoogle Scholar
Melloni, L., Buffalo, E. A. & Dehaene, S. (2019) Computation and its neural implementation in human cognition. In: Strüngmann Forum Reports: Vol. 27. The Neocortex, pp. 323–46. MIT Press.Google Scholar
Poeppel, D. (2012) The maps problem and the mapping problem: Two challenges for a cognitive neuroscience of speech and language. Cognitive Neuropsychology 29(1–2):3455.CrossRefGoogle ScholarPubMed
Schwiedrzik, C. M. & Freiwald, W. A. (2017) High-level prediction signals in a low-level area of the macaque face-processing hierarchy. Neuron 96(1):8997.CrossRefGoogle Scholar
Snyder, J. S., Schwiedrzik, C. M., Vitela, A. D. & Melloni, L. (2015) How previous experience shapes perception in different sensory modalities. Frontiers in Human Neuroscience 9:594.CrossRefGoogle ScholarPubMed