The aim of this paper is to establish the boundedness of fractional type Marcinkiewicz integral
$\mathcal {M}_{\iota ,\rho ,m}$
and its commutator
$\mathcal {M}_{\iota ,\rho ,m,b}$
on generalized Morrey spaces and on Morrey spaces over nonhomogeneous metric measure spaces which satisfy the upper doubling and geometrically doubling conditions. Under the assumption that the dominating function
$\lambda $
satisfies
$\epsilon $
-weak reverse doubling condition, the author proves that
$\mathcal {M}_{\iota ,\rho ,m}$
is bounded on generalized Morrey space
$L^{p,\phi }(\mu )$
and on Morrey space
$M^{p}_{q}(\mu )$
. Furthermore, the boundedness of the commutator
$\mathcal {M}_{\iota ,\rho ,m,b}$
generated by
$\mathcal {M}_{\iota ,\rho ,m}$
and regularized
$\mathrm {BMO}$
space with discrete coefficient (=
$\widetilde {\mathrm {RBMO}}(\mu )$
) on space
$L^{p,\phi }(\mu )$
and on space
$M^{p}_{q}(\mu )$
is also obtained.