Thermal stability of the Schottky contacts on Ga0.51In0.49P has been made. The Ga0.51In0.49P epitaxial layer was successfully grown on the GaAs substrate by LP-MOCVD to form a lattice-matched heterostructure. In this paper, materials aspects of the Ga0.51In0.49P layers were characterized and thermal stability of three different types of films, including single-layer metal (Pt, Ni, Pd, Au, Co, Mo, W, Cr, Ti, Al, Ta, and In), metal silicides (WSi2, W5Si3, PtSi, and Pt2i), and TiW nitrides (TiWNx ) as the Schottky contacts materials on Ga0.51In0.49P were studied. Due to the high bandgap nature of Ga0.51In0.49P, the Schottky contacts on Ga0.51In0.49P demonstrate good characteristics. The barrier heights range from 0.79 to 1.19 eV depending on the selection of the materials and the annealing conditions. For single-metal contacts, Pt film shows the best thermal stability, the barrier height of 1.09 eV and the ideality factor of 1.06 were obtained for the Pt Schottky diode with furnace annealing at 500 °C for 30 min. For refractory compound films, the TiWNx film shows the best thermal stability. The TiWNx Schottky contacts demonstrate excellent electrical as well as physical characteristics, even after high temperature annealing at 850°C.