Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T02:53:29.991Z Has data issue: false hasContentIssue false

Tri-Layer Lift-off Metallization Process Using Low Temperature Deposited SiNx

Published online by Cambridge University Press:  22 February 2011

J. R. Lothian
Affiliation:
AT&T Bell Laboratories Murray Hiil, NJ 07974
F. Ren
Affiliation:
AT&T Bell Laboratories Murray Hiil, NJ 07974
S. J. Pearton
Affiliation:
AT&T Bell Laboratories Murray Hiil, NJ 07974
U. K. Chakrabarti
Affiliation:
AT&T Bell Laboratories Murray Hiil, NJ 07974
C. R. Abernathy
Affiliation:
AT&T Bell Laboratories Murray Hiil, NJ 07974
A. Katz
Affiliation:
AT&T Bell Laboratories Murray Hiil, NJ 07974
Get access

Abstract

A tri-level resist scheme using low temperature (<50°C) deposited SiNx ratfier than Ge for the transfer layer has been developed. This allows use of an optical stepper for lithographic patterning of the emitter-base junctions in GaAs/AlGaAs heterojunction bipolar transistors (HBTs) where a conventional lift-off process using a single level resist often leads to die presence of shorts between metallizations. The plasma-enhanced chemically vapor deposited (PECVD) SiNx shows a sligtly larger degree of Si-H bonding compared to nitride deposited at higher temperature (275°C), and is under compressive stress (-5 × 1010 dyne · cm−2) which is considerably relieved upor thermal cycling to 500°C (-1.5 × 1010 dyne · cm−2 after cool-down). This final stress is approximately a factor of two higher man conventional PECVD SiNx cycled in the same manner. The adhesion of the low temperature nitride to die underlying polydimediylglutarimide (PMGI) base layer in the tri-level resist is excellent, leading to high yields in the lift-off metallization process. These layers are etched in Electron Cyclotron Resonance (ECR) discharges of SF6 or O2, respectively, using low additional dc bias (≤-100V) on the sample. Subsequent deposition of the HBT base metallization (Ti/Ag/Au) and lift-off of the tri-level resist produces contacts with excellent edge definition and an absence of shorts between metallization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for example, Williams, R., Modern GaAs Processing (Artech House 1991).Google Scholar
2. Rothman, L. B., J. Electrochem. Soc. 130 1131 (1983).Google Scholar
3. Milgram, A. A., J. Vac. Sci. Technol. B1(2) 490 (1983).Google Scholar
4. Underhill, J. A., Nguyen, V. S., Kerbaugh, M. and Sundling, D., SPEE-Ad. in Resist Technology and Processing 11, 539 83 (1985).Google Scholar
5. Jones, S. K., Chapman, R. C., Ho, Y.-S. and Bobbio, S. M., Proc. Kodak Microelectronics Seminar, San Diego, CA p. 63 (1986) and references contained therein.Google Scholar
6. See for example, Kruger, J. R., O'Toole, M. Y. and Rissman, P. in VLSI Electronics, Vol. 8, ed. Einspruch, N. (Academic Press, NY 1984).Google Scholar
7. Abernathy, C. R., Pearton, S. J., Caruso, R., Ren, F. and Kovalchick, J., Appl. Phys. Lett. 55, 1750(1989).Google Scholar
8. Abernathy, C. R., Pearton, S. J. and Ha, N. T., J. Cryst. Growth 108, 827 (1991).Google Scholar
9. Ren, F., Fullowan, T. R., Abernathy, C. R., Pearton, S. J., Smith, P. R., Kopf, R. F., Laskowski, E. J. and Lothian, J. R., Electronics. Lett. 27, 1054 (1991).Google Scholar
10. Ren, F., Abernathy, C. R., Pearton, S. J., Fullowan, T. R., Lothian, J. R., Wisk, P. W., Chen, Y. K., Hobson, W. S. and Smith, P. R., Electronics Lett. 27, 2391 (1991).Google Scholar
11. Constantine, C., Johnson, D., Pearton, S. J., Chakrabarti, U. K., Emerson, A.B., Hobson, W. S. and Kinsella, A. P., J. Vac. Sci. Technol. B 8 596 (1990).Google Scholar
12. Pearton, S. J., Chakrabarti, U. K., Kinsella, A. P., Johnson, D. and Constantine, C., Appl. Phys. Lett. 56, 1424 (1990).Google Scholar
13. Asmussen, J., J. Vac. Sci. Technol. A 7, 883 (1989).Google Scholar
14. Katz, A. and Dautremont-Smith, W. C., J. Appl. Phys. 67, 6237 (1990).Google Scholar