Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T03:01:45.385Z Has data issue: false hasContentIssue false

Laser-Induced Selective Copper Deposition on Polyimides and Semiconductors

Published online by Cambridge University Press:  22 February 2011

Seong-Don Hwang
Affiliation:
Department of Physics, Syracuse University, Syracuse, New York, 13244–1130
S. S. Kher
Affiliation:
Department of Chemistry, Syracuse University, Syracuse, New York, 13244–4100
J. T. Spencer
Affiliation:
Department of Chemistry, Syracuse University, Syracuse, New York, 13244–4100
P. A. Dowben
Affiliation:
Department of Physics, Syracuse University, Syracuse, New York, 13244–1130
Get access

Abstract

It has been demonstrated that copper can be selectively deposited on a variety of substrates including Teflon (polytetrafluroethylene or PTFE), Kapton (polyimide resin), silicon and gallium arsnide from solution by photo-assisted initiated deposition. A copper containing solution was prepared from a mixture of copper(I) chloride (Cu2Ci2) and decaborane (B10H14) in diethyl ether and/or THF (tetrahydrofuran). The copper films were fabricated by ultraviolet photolytic decomposition of copper chloride and polyhedral borane clusters. This liquid phase deposition has a gas-phase cluster analog that also results in copper deposition via pyrolysis. The approach of depositing metal thin films selectively by pholysis from solution is a novel and an underutilized approach to selective area deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baulerle, D., in Chemical Processing With Lasers, (Springer-Verlag Berlin Heidelberg) p 73 (1986)Google Scholar
2. Houle, F. A., Wilson, R. J. and Baum, T. H., J. Vac. Sci. Technol. A 4 (6), 2452 (1986)Google Scholar
3. Jones, C. R., Houle, F. A., Kovac, C. A. and Baum, T. H., Appl. Phys. Lett. 46, 97 (1985)Google Scholar
4. Houle, F. A., Jones, C. R., Baum, T., Pico, C. and Kovac, C. A., Appl. Phys. Lett. 46, 204 (1985)Google Scholar
5. Moylan, C. R., Baum, T. H. and Jones, C. R., Appl. Phys. A 40, 1 (1986)Google Scholar
6. Markwalder, B., Widmer, M., Braichotte, D. and van den Bergh, H., J. Appl. Phys. 65, 2470(1989)Google Scholar
7. Dupuy, C. G., Beach, D. B., Hurst, J. E. and Jasinski, J., Chem. Mater. 1, 16 (1989)Google Scholar
8. Baum, T. H. and Comita, P. B., Thin Solid Films 213, 80 (1992)Google Scholar
9. von Gutfeld, R. J., Tyran, E. E., Melcher, R. L. and Blum, S. E., Appl. Phys. Lett. 35, 651 (1979)Google Scholar
10. von Gutfeld, R. J. and Vigliotti, D. R., Appl. Phys. Lett. 46, 1003 (1985)Google Scholar
11. von Gutfeld, R. J., Gelchinski, M. H., Romankiw, L. T. and Vigliotti, D. R., Appl. Phys. Lett. 43, 876 (1983)Google Scholar
12. Al-Sufi, A. K., Eichler, H. J. and Salk, J., J. Appl. Phys. 54, 3629 (1983)Google Scholar
13. Gerassimov, R. B., Metev, S. M., Savtchenko, S. K., Kotov, G. A. and Veiko, V. P., Appl. Phys. B 28, 266 (1982)Google Scholar
14. Micheels, R. H., Darrow, A. D. II and Rauh, R. D., Appl. Phys. Lett. 39, 418 (1981)Google Scholar
15. Wade, K., in Electron Dificient Compounds, (Nelson Publishing, London) p 1 (1971)Google Scholar
16. Awaya, N., Ohono, K., Sato, M. and Arita, Y., VLSI Multilevel Interconnetion Symo. Proc. IEEE p 254 (1990)Google Scholar
17. Temple, D. and Reisman, A., J. Electrochem. Soc. 136, 3525 (1989)Google Scholar
18. Lecohier, B., Philippoz, J.-M. and van den Bergh, H., J. Vac. Sci. Technol. B 10, 262 (1992)Google Scholar
19. Cohen, S. L., Liehr, M. and Kasi, S., Appl. Phys. Lett. 60, 50 (1992)Google Scholar
20. Cohen, S. L., Liehr, M. and Kasi, S., J. Vac. Sci. Technol. A 10, 863 (1992)Google Scholar
21. Reynolds, S. K., Smart, C. J., Baran, E. F., Baum, T. H., Larson, C. E. and Brock, P. J., Appl. Phys. Lett. 59, 2332 (1991)Google Scholar