We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper explains and defends the idea that metaphysical necessity is the strongest kind of objective necessity. Plausible closure conditions on the family of objective modalities are shown to entail that the logic of metaphysical necessity is S5. Evidence is provided that some objective modalities are studied in the natural sciences. In particular, the modal assumptions implicit in physical applications of dynamical systems theory are made explicit by using such systems to define models of a modal temporal logic. Those assumptions arguably include some necessitist principles.
The principle of universal instantiation plays a pivotal role both in the derivation of intensional paradoxes such as Prior's paradox and Kaplan's paradox and the debate between necessitism and contingentism. We outline a distinctively free logical approach to the intensional paradoxes and note how the free logical outlook allows one to distinguish two different, though allied themes in higher-order necessitism. We examine the costs of this solution and compare it with the more familiar ramificationist approaches to higher-order logic. Our assessment of both approaches is largely pessimistic, and we remain reluctantly inclined to take Prior's and Kaplan's derivations at face value.
I attempt to meet some criticisms that Williamson makes of my attempt to carry out Prior's project of reducing possibility discourse to actualist discourse.
I consider the first-order modal logic which counts as valid those sentences which are true on every interpretation of the non-logical constants. Based on the assumptions that it is necessary what individuals there are and that it is necessary which propositions are necessary, Timothy Williamson has tentatively suggested an argument for the claim that this logic is determined by a possible world structure consisting of an infinite set of individuals and an infinite set of worlds. He notes that only the cardinalities of these sets matters, and that not all pairs of infinite sets determine the same logic. I use so-called two-cardinal theorems from model theory to investigate the space of logics and consequence relations determined by pairs of infinite sets, and show how to eliminate the assumption that worlds are individuals from Williamson's argument.
I critically discuss some of the main arguments of Modal Logic as Metaphysics, present a different way of thinking about the issues raised by those arguments, and briefly discuss some broader issues about the role of higher-order logic in metaphysics.
Consider one of several things. Is the one thing necessarily one of the several? This key question in the modal logic of plurals is clarified. Some defenses of an affirmative answer are developed and compared. Various remarks are made about the broader philosophical significance of the question.
According to Timothy Williamson, we should accept the simplest and most powerful second-order modal logic, and as a result accept an ontology of "bare possibilia". This general method for extracting ontology from logic is salutary, but its application in this case depends on a questionable assumption: that modality is a fundamental feature of the world.
Kripke models, interpreted realistically, have difficulty making sense of the thesis that there might have existed things that do not in fact exist, since a Kripke model in which this thesis is true requires a model structure in which there are possible worlds with domains that contain things that do not exist. This paper argues that we can use Kripke models as representational devices that allow us to give a realistic interpretation of a modal language. The method of doing this is sketched, with the help of an analogy with a Galilean relativist theory of spatial properties and relations.
A-theorists think there is a fundamental difference between the present and other times. This concern shows up in what kinds of properties they take to be instantiated, what objects they think exist and how they formalize their views. Nearly every contemporary A-theorist assumes that her metaphysics requires a tense logic – a logic with operators like (‘it was the case that...’) and (‘it will be the case that...’). In this paper, I show that there is at least one viable A-theory that does not require a logic with tense operators. And I will argue that three common indispensability arguments for tense operators are unsound.
Williamsonian modal epistemology (WME) is characterized by two commitments: realism about modality, and anti-exceptionalism about our modal knowledge. Williamson's own counterfactual-based modal epistemology is the best known implementation of WME, but not the only option that is available. I sketch and defend an alternative implementation which takes our knowledge of metaphysical modality to arise, not from knowledge of counterfactuals, but from our knowledge of ordinary possibility statements of the form ‘x can F’. I defend this view against a criticism indicated in Williamson's own work, and argue that it is better connected to the semantics of modal language.
What kind of semantics should someone who accepts the epistemicist theory of vagueness defended in Timothy Williamson's Vagueness (1994) give a definiteness operator? To impose some interesting constraints on acceptable answers to this question, I will assume that the object language also contains a metaphysical necessity operator and a metaphysical actuality operator. I will suggest that the answer is to be found by working within a three-dimensional model theory. I will provide sketches of two ways of extracting an epistemicist semantics from that model theory, one of which I will find to be more plausible than the other.