For 0 < P,q < ∞, α> −1, Ap,q,α denotes the space of all holomorphic functions in the unit disc satisfying
![](//static.cambridge.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0004972700003129/resource/name/S0004972700003129_eqnU1.gif?pub-status=live)
where
![](//static.cambridge.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0004972700003129/resource/name/S0004972700003129_eqnU2.gif?pub-status=live)
In this paper, we find a sufficient condition for the multipliers from AP,q,α into ls, 1 ≤ s ≤ ∞, 1 ≤ q ≤ 2, which interpolates the results of Patrick Ahern and Miroljub Jevtic. As a corollary, we can calculate
![](//static.cambridge.org/content/id/urn%3Acambridge.org%3Aid%3Aarticle%3AS0004972700003129/resource/name/S0004972700003129_eqnU3.gif?pub-status=live)
for q′ ≤ s ≤ ∞, 1/q + 1/q′ = 1. Also, we can find a sharp coefficient condition for HP functions.