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FRENET FORMULAE FOR HOLOMORPHIC CURVES

IN THE TW0 QUADRIC

KicHooN YaNG

We give a complete description of holomorphic curves in the
complex two quadric via the method of moving frames. For compact

curves a Morse theory type integral formula is derived.

0. Introduction

Let M be an orientable Riemannian two manifold. Also let Q2
denote the hyperquadric in CP3 which is identified with the real

. . . 4 .
Grassmannian of oriented two planes in R |, 1In this paper we study

isometric holomorphic immersion of M into Q2 , where M 1is given the

induced complex structure coming from its (two dimensional) Riemannian
metric,

Viewing QZ as a homogeneous space §0(4)/50(2)x50(2) we apply

the method of repére mobile. We succeed in finding a local normal form
(10), and in doing so we stumble upon a global contact invariant which we
call 1. This invariant T is our analogue of the torsion of real curves
in Euclidean three space. Indeed the totality of holomorphic isometric
immersions of M into 02 is parametrized by solutions of a single
differential equation (17) on M involving the Gaussian curvature of M

and the invariant t. Moreover, given a solution K, T of (17) an
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actual immersion of M into 02 is constructed using integration involv~

ing ordinary differential equations only. Thus the equation (17) may be
called the complete integrability condition of the exterior system

describing holomorphic isometric immersions of M into QZ .

Assuming that M is compact and connected now, integration of (17)
yields an interesting integral formula (21). This formula relates the
number of zeros of 7T, area of M , and the Euler-Poincaré characteristic
of M in a simple way. The significance of this Morse theory type formula
is not apparent to the author.

Finally in section 3, as an application of our local normal form
(10) the superminimality of the orthogonal maps of holomorphic curves in

Q2 is established.
1. Frenet frame construction

In this section we give a moving frame theoretic description of
isometrically immersed holomorphic curves in the two-quadric. Besides
finding a local normal form (10) for such curves we obtain a single global
invariant, which we call T. The totality of holomorphic curves then is
parametrized by the solutions of a PDE on M (17) involving the Gaussian

curvature and T.

Let Q2 denote the complex hyperquadric in CPS. QZ is also the
real Grassmannian of oriented two-planes in R4. As a homogeneous space
Q2 = 8S0(4) / S0(2)xs0(2).

The following index convention will be adhered to throughout this

section: 1 <Z,j,k, ... <2, 3 s a,b,e, ... £ 4, and 1 £ a,B,Y, ... < 4.

If A= (AI,A2,A3,A4) = (4,) ¢ S0(4) then the projection map

T: SO (4) > Q2 is given by w(4) =[4, A A] = [Al + iA2] , where

1 2

L AZ A A2] is the oriented two-plane in R4 spanned by AZ and A2 and

[A4, + iA2] is the point in CP'3 represented by the homogeneour coordin-

=71

ate vector Al + iAZ.
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et 8 = (Qg) denote the Maurer-Cartan form of S0(4), Then a
$0(4)~invariant hermitian metric on QZ is given by the pull-back of

a,2 . . . . . 3
¥ I (Qi) . (This is the induced metric of the inclusion Q2 < CP” ,

a,i

the latter with the standard Fubini-Study metric.)

2 . : .
We use (M, ds”) +to denote a connected, orientable Riemannian two

1

manifold. Let 67, 62 be a local orthonormal coframe field so that

1

E

d82 = (91)2 + (62)2 . By decreeing that ¢ = 67 + iez is of type (1,0)
we introduce an almost complex structure on M and by the Korn-
Lichtenstein theorem this almost complex structure is actually complex,
hence M is now a Riemann surface.

Let f : M > Q2 be a holomorphic, isometric immersion. A local

lifting e = (ea) : U <c M->S0(4) (which exists) will be called a S50(4)-

frame along f. Note that mo e = f = [el A 623 .
Notation. e* 2 = w R ¢1 = Z-(wg + iws), ¢2 = l-(w4 + iw4) .
B B8 /3 1 2 /5 1 2

1
Then holomorphicity of f is reflected by the fact that ¢  and ¢2 are

type (1,0) forms on M. Thus we can find locally defined complex valued

functions Zl, 22 such that

(1) ol =zl , o% = 7% .
Since f 1is an isometric immersion we must have
(2) 12212+ 12712 = 1.

~

Given e, other local 80(4)-frames along f are given by e = ¢k

itl it,
where k = (e , e ) U >U(1)xU(1) = S0(2)xS0(2). (We use the

identification el » (Cos t, -sin tJ R

sin £, c¢os ¢

Notation. g*ﬁz = ;Z , similary define C;z) .
~1 ~2 . .
let Z° , Z° be locally defined complex valued functions so that
~1 jod ~2 2
(3) ¢ =72¢ , b =29,

https://doi.org/10.1017/50004972700003063 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700003063

198 Kichoon Yang

Computations show that

it
~ X 1.1
Z'z cos t2, sin t2 e Z
(4) =
it
~2 . 1,2
Z -sin 1:2, cos t2 e Z
pefine 1 = |(20)% + (Z2)2|, T = | (7% + (Z8)%] . From (4) it follows
immediately that 1 = Tr' , that is, Tt 1is a global invariant. Note that

t :M=:[0,1].

PROPOSITION. i) If t is constant then either 1 =0 or 1 = 1;

ii) if 1 =0 then f(M) <is congruent to an open submanifold of
(totally geodesic) CF = U(2) / U(1)xU(1) < Q, with the Caussian
curvature 4;

iii) <f =

QZ = .5’2 = S0(3) / s0(2) < Q2 with the Gaussian curvature 2.

1 then f(M) is congruent to an open submanifold of

Proof. fThe proof of i) will be given at the end of this section.

1
Suppose that tv = 0. Put 2= ZZ where ¢1 = Zl¢, ¢2 , = ZZ¢ as

Z

in (1). Then ReZ L ImZ and |ReZ| = IImZ| = i at every point of M,
V2

Thus we can choose a S0(4)-frame e about any point of M so that,

relative to e ,

o= Lo, ¥ = Lo, enar s, ex(ed 4 ind) = o erced 4 a0d) =04
V2 V2
. . . 3 4 3 4
Consider the exterior system on S0(4) given by {Ql = Q,, 92 = -91} .
This system defines a completely integrable left invariant distribution on
S0(4) whose analytic subgroup is H = {[2 _ﬁl € 50(4)} S uyce)

It is now a fairly easy matter to check that f(M) is congruent to an
open submanifold of H / G n {S0(2)xS0(2)}. The proof of iii) is omitted.
(We just mention that the exterior system to consider for iii) is

4 4
1

{n =0,92=0}.) ]
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Remark. The above two cases (T = 0, T 8 1) give the only

homogeneous holomorphic curves in (&; this now follows essentially from
a theorem of E, Cartan ([2] , p. 155, also [4] , p. 41).
LEMMA. 1 <{s either identically zero or 0} is an isolated set.
Proof. Assume that T is not identically zero. Recall that
T = (ZZ)Z + (22)2 where Zl, ZZ are defined by (1), which says

¢1 = Z1¢ R ¢2 = ZZ¢ . Put 1 = (Z1)2 + (22)2 . Then, though T, is

defined only up to modulus, TEJ{O} is a well-defined set and indeed

TEJ{O} = T_J{O} . Now using the structure equations of S0(4) we obtain
(5) d¢1 = iwé A ¢1 - wZ A ¢2 = izlw; Ad - Zzwi Ad o,
2 3 1 . 1 2 13 .2 1
= = A
de wy A O du, A ¢ Zwy A o+ 12 Wy 9.

We also have

(6) dy = 1w A b,
2
where w is the Levi-Civita connection form of (M,ds").

It follows that (using det = dczte))

) azl = iZZ(wé-w) - zzwz (mod ¢),
a2’ = it (u-w + zle (mod ¢)

Thus

(8) dTC = ZiTC(w;—w) (mod¢ )

It now follows from a theorem of Chern ([3], section 4) that the zero set

of Tc (hence that of T ) is isolated. Moreover, the theorem says that

the zeros are all of finite multiplicities.

Assume that T is not identically zero. Let p € M\ T i),

Then, in a neighbourhood of p,T is never zero, hence Tc + defined on a
. ) . %6
possibly smaller set, is never zero. Define real valued 6 by Tc=Te .

Possibly restricting to a yet smaller neighbourhood of p we can assume
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that 6 1is a smooth real valued function, (Take a smooth single-valued
-9 itl ~
brance of 6.) Let tl =5 k=( *, 1), and e = ek. Then using
~1
~1,2 22,2 R ~ Z
(4) we see that (Z°)° + (Z7)° is real valued. Putting 2 = 22 we
then must have ReZ L ImE, and IRei} > ]Iﬁzl. Now applying the rotation

in the normal plane we can change 7 to (Zb] , where a > |b| 2 0.
)
. 2 2 . .
Since a + b~ =1 ((2)) we can find leccally defined smooth « such that
a = cos a,

2) b

sin a,

< q <

ENE

LR
4
We summarize the preceding discussion as follows. In a neighbourhood

of every point of M\T_J{O} there exists a §0(4)-frame relative to which

the following normal form holds;

¢1 = cosa ¢
(10)
¢2 = isinyg ¢, where - %-< o < %~.
-1
so, on M1t {0} we have
2 .2
(11) T = cos 0 -sin o = cos 20 > (.

Upon exterior differentiation we get
(12) dt = -2sin &a do .
On the other hand (8) gives

(13) dr = 2iT(mé-w) (mod¢ ) .
Combining (12) and (13) and using the fact that T is real we get
(14) {sin 20 do + icos 20 (w;-w)] A ¢= 0 .
It follows that
(15) gr(wwl) = 4dr
where * is the Hodge operator of CM,dsZ) .
Rewriting,
(16) 2(w—w§) = *dlogt .
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2
let K denote the Gaussian curvature of (M, ds") so that

dw = %—K.¢ A E—. Also let A denote the Laplace-~Beltrami operator of

(M, ds®) so that ddlog =% (alogt) 4 A .

Exterior differentiation of both sides of (16) now gives
(17) 2(K - 2) = alog 7.
The equation (17) holds in M\T—J{O}.

Proof of Proposition part i). Assume that T is constant and not

zero. So the local normal form (10) is valid. Using (10) the equation in

(7) becomes dcosa = -isina wi (mod¢), idsina = cosa mz(mod¢). It follows
3 3 3 4 3 4 . . -
= . = A + A = - A = .
that w, = 0. Hence dw4 Wy AWty Aw, icosasina ¢ A ¢ = 0
Since - %’< a < %' we must have sina = 0, and o = 0. This means that

T = cos 20 = 1.
Remark. i) If K 2 2 then (17) says that logr is subharmonic

with singularities at T—l{o} where it goes to -~ ., Further if M is
compact then logt attains a maximum in M, hence is constant by the
maximum principle for subharmonic functions. It follows that XK = 2.
ii) Combining the Proposition part ii) with the preceding remark it

follows that for compact M,X = 4 if and only if T = 0.

2. Integral formulae.
In this section we assume that M is a compact, connected, orient-
able surface. Write M = Mé, g, the number of handles. We have
X(M) = 2 - 29 , where X(M) 1is the Euler-Poincaré characteristic.
et f : M~> Q2 be a holomorphic, isometric immersion as in section
1. Then in M\T_I{O} the equation (17) holds and T_1{0} ig a finite set

(or Tt is identically zero.) In the following we will give an integrated
version of (17) relating x(M) , Area(M), and the number of zeros of T.

We have
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(18) area() = & fq,/\;,
M

Note that though ¢ is defined only locally ¢ A ¢ is a global 2-form
and §~¢ A E- is the area form of M,
The Gauss-Bonnet—-Chern theorem states
7 —
(19) x(M) = 2 J K6 AT,
M

As an application of the elementary argument principle we get

(20) - I { blogT ¢ A ¢ = # (r'l{o}) R
M

-1 . . R
where # (1t “{0}) 1is the number of zeros of T each counted with multipli-
city. Of course, here, we must assume that T is not identically zero so

that the formula makes sense in view of the Lemma in section 1.

We also know that %-Area(M) is a positive integer. This follows
from the well-known equidistribution property of compact projective curves:
Include f(M) < Q2 c cp? . Then for a non-planar f(M) in CP3,%-AreaOM)
is the intersection number (counted with multiplicity) between f(M) and

any CPZ < CP |

Integrating (17) over M now gives:

THEOREM A. Let M be a compact, comnected, orientable surface with
a Riemannian metric, equipped with the induced complex structure. Assune
that the Gaussian curvature of M 4is not identically equal to 4. Also
let f : M ->02 be a holomorphic, isometric immersion. Then (with

notation as above)

(21) #(710Y = 26 area(w) - x(m))

~ 2

COROLLARY. i) If M=M =S5 then Area(M) 2 2v . Note the case

K = ¢4 has been excluded. Also, then, Area (M) = 2v <if and only if f(M)
is congruent to 01 .
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ii) if M= Mg with g 2 1 then 0y s not emply, hence #
(«10}) isa positive even integer.
3. Normal superminimal surfaces

As an application of our frame construction in section 1, in
particular the local normal form (10}, we will show that the normal map

of a holomorphic curve in Q_, is superminimal. (See theorem B. below

2
for a precise statement.,) But first we review briefly the notion of
superminimality.

Superminimal surfaces naturally arose as minimal spheres in

Euclidean spheres or, more generally in spaces of constant curvature.

2
(The nomenclature was first employed in [1].) Let (M, ds”) be a

connected, orientable two-manifold endowed with the induced complex
2 . .
structure as in section 1. Also let (W, dsN) be a Riemannian manifold

of dimension 7n > 4. We consider a smooth isometric immersion g: M > N.
We will use the following index convention for the rest of the paper:

1 <4, J, kyooo £ 2, 3 < a,b,e, ... $n, 15 a,B,y, ... 1.
Let (9“) be a (local, of course) orthonormal coframe on N. The

Levi-Civita connection forms (Gg) are characterized by the structure
. a a B a
equations d6 = -6, A 6 ., An orthonormal coframe (6 ) along the map

B

g is called a Darboux coframe if (8%) =0 on M. 1If 8%) is a

Darboux coframe then dea = -eg A ez = 0 for every a. Applying Cartan's

lemma we get 8% =h% .87 for some local functions K%, = h%. . Define
% 1 Jt

5% = _h§1 + ih;z and put S = (s%). 1et ¢ = 61 + i62. Then ¢ is a

type (1,0) form on M and dsz = ¢¢ . Then the quartic symmetric form

of type (4,0) ¢ = tSS¢4 is a globally defined form on M,

DEFINITION., A smooth isometric immersion g: M > N is said to be

superminimal if it is minimal and ¢ vanishes identically.
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Now if N 1is of constant curvature then one can show that ¢ is
holomorphic, hence by Riemann-Roch a minimal sphere in N is superminimal

with the induced metric. Of course, this is not the case for N = QZ'
We now consider f: M -+ 02 a holomorphic, isometric immersion as

before. If e = (e 24) is any S0(4)-frame along f (that is,

1)62_923)
f= [el A 22]) then the normal map fJ' M QZ is defined to be

[e, A 64] which is globally defined.

3

THEOREM B. Let f: M - Q2 be a holomorphic, isometric immersion of

a connected, orientable two-manifold (M, dsg) with the induced complex
structure. Then the normal map fJ‘ M 02 18 a superminimal (not *
holomorphic) immersion.

Proof. 1If e = (21,e2,63,e4) is any local S0(4)-frame along f

then E = (EJ’EZ’Eg’E4) = (85,64,91,62) is a local S0(4)-frame along
g = fl‘ . Using the notation wg = e*Qg and wg = E*QZ we get
oL Ia + 2| . s
W, = w , where |o + 2| is defined to be o + 2 (mod 4), and
8 g+ 2|
likewise for |[B + 2|. Let ;51 =1 (m? + iwg) and ¢2 -1 (wj + iwg)
V2 /2
Recall that ¢1 =1 (wf + iwg) = Zl¢, ¢2 =1 (wj + iw;) = Z2¢>, IZJ I2+|22|2=
vz vz

1, ¢ a local unitary coframe on M. So the induced metric on ¥ by g

~I1%1 | ~2%2

is ¢ ¢ + ¢ ¢ =—§—(w§)2+(m§)2

+ (m§)2 + (wi)Z = ¢§ . This shows that

g = f" is an isometric immersion.
We first assume that T 1is not identically zero so that the local
. L q s -1 -1 . .
normal form (10) is valid in M\t ~ {0} where T {0} is an isolated set.

. . . . -1
We will show that g = fl is superminimal in M\t {0}, Then g has to
be superminimal everywhere in M by a simple continuity argument in yiew

of the fact that g is an isometric immersion. In a neighborhood of a
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point in Mt {0} we can choose a 50(4)-EFrame along f so that

1 2 . AN
relative to it ¢ = cosa ¢, ¢ = isina , where - % < a < 1;1_ . (This is
; ~1 1 s 2 22
(10).) This means that ¢ = -cosa 6 + isina 6 , and ¢ =-cosa -

1 .2 ~1
ising 91 , where ¢ = 8 + 486 . It is at once observed that ¢1 ¢2
are neither of type (1,0) nor of type (0,1), hence f‘L is neither
holomorphic nor antiholomorphic.
1 - ~4 -~ ~4 ~7 ~ -~ ~
Now — (ml, Wy, wg, m2) = (0, 62, 83, 94) = %8 form an orthonormal
V2
coframe along the map g = f‘L Let k be a 8§50(4)-valued (local) function

on M given by

- 0 s 0
k = 0-c 0 s , where ¢ = cosa, § = sina.
0 s 0 ¢
- 0 -c 0
Then 6 = t(el, z 3 4) = k_l is a Darboux coframe along g, that is,
3 4 . 3 4
6= 96 =0 on M. Computations show that 61 = do = 92 and
3 4 4 3 _,38 1 3 2 _ 4 4 4.2
B, = twz; = -8,. So 0 = hﬂe + h126 = 62 h219 +h 6 and
333 1, 3 2 A g4l 42 3 .83 .
62 = 71216 + h226 = 61 = hlze h12 For h12 = h21 implies that
4 4 4 4 . . 3 3 .
hll + h22 = 0 and h12 = h21 implies that hll = h22 = 0. This proves

that f' is minimal.

Now using the normal form (10), (7) becomes
_ . 1 .. 3

dcosa = icosa (wg—m) - isinaw, (mod¢) ,
o _ . 1 3

idsing = -sing (‘”2_“’) + cosa w4(mod¢) .

. . ., 4
It follows that do= -sino dcosa + cosg dsing £ Ztw. (mod¢), Using the

3
fact that da is real it follows that ‘rmi = *dg. But this means that
4 _,.3 4 .4 1 .4 2 L3 _ .31 .32
6, = %0, . So 6, = hlle + hlze = "0, = 'hzze + hlle ,and
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4
11

tss = (-h°

L3 .2 4.2 ,
1t Lh12) + (-h,, + zhlg} = 0., Hence the quartic form ¢

vanishes proving that f'L is superminimal.

We now consider the case T identically zero. Then in a neighbour-

hood about any point of M we can choose a 50(4)-frame along f so that

. . 1 1 2 3 s .
relative to it ¢ =—¢, ¢ = 2—¢ + (See the proof of the Proposition in

/2
section 1.) Using this local normal form an argument completely analogous
to the one given for the case T not identically zero finishes the proof

of the Theorem. 0
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