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SYMMETRY GROUPS ON ORDERED BANACH SPACES

SADAYUKI YAMAMURO

A symmetry of an ordered Banach space is an order and norm
isomorphism which commutes with its ideal centre. A class of
ordered Banach spaces is introduced to show that, for a space
in this class, the group of symmetries is trivial if and only
if the space is lattice-~ordered. When this group becomes
larger, the space approaches an antilattice. This phenomenon

is also investigated.

1. Preliminaries.

Let B be a real Banach space ordered by a closed and proper

s + . .
positive cone B . Throughout this paper, B 1is always assumed to be
archimedean.
. + s
The cannonical half-norm N associated with B , due to [3], is

defined by

W(x) = inf {||z + y|| : y € B’} for all z e B .

An element x € B is said to be orthogonally decomposable if there exist

elements y and 2 of B+ such that
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=y -2z, ||y|| = N(z) and |[|z|| = N(-x) .

If every element of B is orthogonally decomposable, then B is said

to be orthogonally decomposable. (See []71.)

Let L(B) be the Banach space of all continuous linear operators

on B with the operator bound norm. The positive cone L(B)* consists

of ¢ in L(B) such that ¢(B+) c B+ . B is said to have the Robinson
property if
+
Hell = suwp {[locx)|| : |lz|]| <1, =B}

for all ¢ € L(B)+ . (see [16].)

An N-automorphism of B is a bijective element ¢ of L(B} such
that N(¢(x)) = N(x) for all x € B, The set of all N-automorphisms of
B is deonted by G(B) , which is obviously a group. The following two
facts have been proved in [173.

(1.1) When B 1s orthogonally decomposable, ¢ € G(B) <if and only

if |letz)|| = ||x|| for all x e B and ¢ is an o. d. isomorphiem
(that is, ¢ is a continuous bijection and ¢(x) = ¢(y) - ¢(2) is an
orthogonal decomposition of ¢(x) if and only if x =y - 2z is an
orthogonal decomposition of x).
(1.2) When B is orthogonally decomposable and has the Robinson
property, then ¢$eG(B) if and only if ¢ <is a bipositive isometry.
The ideal centre of B is the set Z(B) of all elements T of

L(B) such that there exists a number A, depending on T, such that

-Ax < Tx £ Ax for all «x € B" . For Te z(B) , we can define a norm
[7]| = inflr 20 : Az < Tw < Az for all xe B} .

A sufficient condition for ||T||o = ||7|| for all T e Z(B) is that

both the norms of B and B? , the dual of B , are absolutely monotone.
(see [15], Lemma 2.3 and [4] , Theorem 1.3.1.) If this is the case, Z(B)
is an ordered Banach space with an archimedean order and the multiplicative
unit. Hence, by [710], it is an abelian real Banach algebra. For the
spectrum § of Z(B), the Gelfand transform is an isometric, order and

algebraic isomorphism onto ((R) . Furthermore, by [15] , Corollary 1.13,

+
for every a¢ B , themap T »Ta is a lattice homomorphism of Z(B)
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onto a sublattice of B. Following [15], we call B regular if
HTHO = ||7|] for ai1 T € z(B).

An element ¢ of G(B) such that ¢T = T¢ for all T e Z(B) is
called a symmetry. (See [7] and [§].) The set of all symmetries is
denoted by S(B) , which is obviously a subgroup of G(B).

cr ko _x - R
The positive cone (B') of the dual B is the set of all

fe B" such that f(x) > 0 for all =z ¢ B" . An element f of (B*)+

is said to be order-continuous if x = sup(xi) for an increasing net of

positive elements Cxi) implies ff(x) = sup f(xi} . The set of all

order~-continuous elements of (B*)+ is denoted by B° . as in the case of
¢[0,1] , it is possible that BOc can contain only the zero functional.

. . . oc %+
On the other hand, if the norm of B is order—continuous, then B = (B") .

+ . . - . .
An element g of B is said to be (¢¢)-quasi-interior if

fla) =0 and f € : imply f=0.

Now we set

B(G) ={x e B : ¢(x) = x for all ¢ € G(B)}

B(S)

{x € B :¢(x) =x for all ¢ € S(B)}

If B(S) contains an (0¢)-quasi-interior point, B 1is said to be H-finite;

otherwise, B is called H-infinite.

2. Problems,
When B is a Banach lattice, we have

z2(B) = {T e L(B) : |Tz| < A|]xz| for all =z € B and some A}.
It is known ([Z], Theorem 3.2) that, when B is O-complete, T e Z(B)
if and only if T commutes with all band projections.
(2.1) When B 1is a o-complete Banach lattice, we have S(B) = {1},

where 1 denotes the identity operator.

Proof. Let ¢ ¢ S(B). Since Z(B) contains all band projections,

¢ commutes with all band projections. Hence, ¢ € Z(B) . Now, B is
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orthogonally decomposable, has the Robinson property and norm, together

~

with the dual norm, is absolutely monotone. Therefore, ||¢|| = ||¢||0=

and, hence, 0 < ¢(x) < x for all x € Bt . Similarly, 0 g ¢E1(x) < x

+
for all x € B, Hence, ¢ = 1.
Now, let B be a general ordered Banach space, The above fact
leads to the following question : is B lattice-ordered if S(B) = {1} ?

More generally, we shall consider the following problem.

Problem 1. Is B(S) 1lattice-ordered?

We shall show that the answer is affirmative for a special class
of ordered Banach spaces. This shows that, as B becomes more lattice-
like, S(B) will become smaller and B(S) will become larger. An
ordered Banach space is called an antilattice if 2z = sup(x,y) implies
x2y or <y . (See [11]1 and [/3].) Then, B(S) will be the
smallest when B is an antilattice. We consider this problem in the

following three forms.

Problem 2. 1f B is an H-finite antilattice, is B(S) generated

by a single (oe¢)-quasi-interior point?

Problem 3. If B is an H-infinite antilattice, do we have
B(s) = {0} 2

Problem 4. 1f S(B) = G(B), is B an antilattice?

3. Ordered Banach spaces of type (P).
Let B be an ordered Banach space. We suppose that there is a
family {Pa : a € Bt} of projections (the idempotent elements of L(B) ).

An orthogonal decomposition aq = b - ¢ is called proper if the following

two conditions are satisfied:
(1) Pb(c) = Pc(b) =0 ;
(2) If ¢(a) =a for some ¢ € S(B) , then ¢ (b) =b .
For every a € B+, we set

BZ ={z e B : flx) =0 if fe B°® and fla) =01}.

https://doi.org/10.1017/5000497270000304X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270000304X

Groups on Banach Spaces 181

An ordered Banach space B is said to be of type (P) if it is
regular and it is equipped with a family {Pa P ace B+} such that the
following conditions are satisfied:

(P1) Pa(B+) = B; and aq € B; for all q € 8"

(P2) 1f a € B(§5) , then Pa <1,

(P3) Every element of B admits a proper decomposition.
Before proceding further, we give some examples.

Example 1. Banach lattices which are o-complete and in which the

norms are order-continuous are of type (P). 1In this case, Pa is

defined by
P (x) = sup (x A na) ,
nz1
which is the band projection associated with {a}ll . By definition, the

norms of Banach lattices are absolutely monotone. Hence B 1is regular.
. . . oc *,F + A
Since the norm is order-continuous, B = (B")" , and Ba coincides

with the "positive bipolar" considered in[74] where the equality (P1)
has been proved. (P2) and (P3) follow immediately from (2.1) and the

basic properties of band projections.

Example 2. Let M be a von Neumann algebra and B = Mh be the
ordered Banach space of all hermitian elements of M. Then B is of
. +
type (P). First note that, this is obviously regular, For each a € B,

define Pa by Pa(x) = g(a)xs(a), where s(a) is the support of a.

since B = (M*)+ s the positive part of the predual ¥, fla) = 0 for

fe B°¢ implies f(s(a)) = 0 , and the relation (P1) can be proved
directly or by a modification of a result in [5], p. 357. as to (P2) ,
we first note that T € Z(B) if and only if Tl n M e M' and Tx = 2-T1

for every x € B . For the proof of this fact, see, for instance, []] .

Since Mh is orthogonally decomposable and has the Robinson property,

G(B) is the set of all bipositive isometries on MP . 1In other words,

G(B) 1is the set of restrictions, to Mh , of all Jordan *-isomorphisms
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¢ of M such that ¢(I1) = 1 . Furthermore, it follows from the above
characterization of Z(B) that ¢ ¢ S(B) if and only if ¢ is the

restriction of a Jordan x-isomorphism of M which is identical on the

centre M n M' , Hence, we have B(S) = (M n M’)h . Therefore, if

a € B(S) , then s(a) is an central projection, Hence, Pa(x) s x for

+ . cas . . .
all x € B . Finally, the condition (P3) is satisfied because the usual

+

orthogonal decomposition a =a -a~ , at a =0, is a proper

decomposition.

javd

Example 3. Let M be a von Neumann algebra on a Hilbert space

and suppose that there is a cyclic and separating vector EO € H for M.

Then, by the Tomita-Takesaki theory, there are a conjugation operator o

and a modular operator A associated with Eo . The real part of # ,

# =1 el : gE =8},

is then an ordered Hilbert space ordered by the "natural cone"

I
H+={A4x50:x6M+}.

(See [6] and [9].) This is of type (P). Since the norm is absolutely
monotone, ¥ is regular. We define P, by P = pgj(pg) » where pg

is the projection on the subspace [M'E] and j(pg) = Jng . By [91,

Theorems 4.5 and 4.6, we have
PE(H+) ={nel :(no)=0 ifpe H and (p,8) =0}.

Therefore, we have the equality (PI) if the norm is order-continuous.

; . ) +
To prove this, suppose that n = sup (ni) for an increasing net (ni)c H .
Then, -n =< ni < n. The element N can be assumed to be cyclic and
separating, because otherwise we can take n + (I - pn)j(l - pn)Eo
instead of n . Since n € H? , ' is equal to the closure of

% + . . . 1‘/1

{An4 xn:xe M} and there is an order isomorphism ¢ of onto the

set

{p ¢ g -An < p £ An for some Al
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%
defined by ¢(z) = A; xn . ([91 , Theorem 2.7.) Since ("i) is

contained in this set, there are z, € 1‘/1 and X € 1‘]1 such that
@(xi) =n; ¢(x) =n and zx = sup (:L‘i) . FPurthermore, letg - x| >0

for every £ € H . fThen, since HJ(xi - xg)ll + 0,

2
- nl|

[In;

% %
i (An (xi - x)n , An (xi - x)n)

%
(A;(xi -xh , (xi - x)y)

(J(xi -z , (xi - x)n)

[

[z, - zm||-|l(z, - @nl| >0 .

To prove (P2), we start with a result in [7] that Z(HJ) = (Mn M’)h .
On the other hand, G(HJ) is obviously the set of all unitary operators

u € L(H) such that u(H+) =5 . Hence, S(H+) is the set of all
unitary operators u in R(M,M'} , the von Neumann algebra generated by

* Now, suppose that & ¢ HJ(S) . Then,

M and M' , such that u(H+) =H
uj(u)g = £ for all unitary element u of M, because uj(u) € S(HJ)

Since j(u)t = u*t , we have [M'E] = [M£] , which means that Pg is a

central projection. Therefore, pg < 1 , and, hence, Pg < 1. The
condition (P3) is satisfied because the usual orthogonal decomposition

+ -
E=¢ - ¢, (&

, E) =0, is a proper decomposition.
4, Problems 1, 2 and 3.

We start with a lemma.
(4.1)  Suppose that B <is an ordered Banach space which is regular

and BT s generating, Then, if B 1is an antilattice and 0 s P = P2 < 1,

then P=0 or P=1,

Proof. Since P € 2Z(B) and 1 - P € Z(B) , for each a€B' we
have that Pa and (I - P)a belong to a lattice-ordered subset of B ,

because B 1is regular. Then, since B is an antilattice, Pa and

https://doi.org/10.1017/5000497270000304X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270000304X

184 Sadayuki Yamamuro

(1 - P)a must be comparable, that is, Pa £ (1 - Pla or Pa z (1 - P)a.

It then follows that, for every a ¢ B+ , we have either Pa = 0 or

Pa = a . Suppose that there are nonzero elements a and b of
B® such that Pa =0 and Pb=1b . Then, P(a+b)=b and a+ b b,

which is a contradiction. Hence, since B is generating, we have either
P=0 or P=1.
We now give the answers to the first three problems when B is of

type (P) .

(4.2) Let B be an ordered Banach space of type (P).

(1). B(S) is lattice-ordered.

(2). If B 1is an H-finite antilattice, B(S) 1is generated by
an (ocl)-quasi-interior point.

(3). If B is an H-infinite antilattice, B(S) = {0} .

Proof. (1). Let a € B(S) and a=Db - ¢ be a proper
decomposition. By (P3), b € B(S) . Therefore, P, <1 by (P2).

b
Furthermore, (PI1) implies Pb > 0 . Therefore, if ¢ 2 a and x 2 0 ,
we have b = Pba < Pb x <2 . This means b = sup (a,0).

(2). Since B(S) 1is a sublattice of an antilattice, it is totally
ordered. Hence it is generated by a single element. Since B is
H-finite, the element must be an (oe)-quasi-interior point.

(3). Suppose that a € B(S) and a # 0. By (P3), we can
assume that a € B . By (P1) and (P2) , we have 0 % p, £ 1 . Hence
by (4.1), we have Pa =0 or Pa =1 . However, by (PI1), pa =0
implies a = 0 , a contradiction. Hence, Pa =1 , or, equivalently,

B; =" by (P1). Hence, a is an (oc)-quasi-interior point. This
contradicts the assumption.

An immediate consequence of (4.2) (1) is the following fact.

(4.3) When B 1is an ordered Banach space of type (P), S(B) = {1}
implies that B 1is lattice-ordered,
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5. Problem 4.

The answer to this problem is in the negative. We shall give a
negative example when B is a finite-dimensional von Neumann algebra. We

recall that every finite-dimensional von Neumann algebra M is a direct

sum
M=M oM @ ...
k, ¥ M &M s
1 2 m
where Mk is the algebra of all kn X kn matrices. The set
n
{kl’ k2,... km} characterizes the structure of M , We shall show that

G(Mh) = S(Mh) if and only if the numbers in this set are different.
(5.1) Let M be a finite-dimensional von Neumarm algebra. Then,

G(Mh) = S(Mh) 1f and only if M <is a direct sum of factors which are

not mutually Jordan *-isomorphic.

Proof. There are factors Mh(n =1, 2, ... m) such that M is a
direct sum : M = Ml & M2 & ... 8 %ﬂ . Since the centre of M 1is the
direct sum of centres of Mn , the central projections of M are linear
combinations of the following projections:

e; = 1906 ... &, ey = 0®16... 60,

e =06 ... 0861.
m

Now, suppose, for instance, that Ml and Mé are Jordan *-isomorphic and

Y 1is the isomorphism. Then, the map defined by
-1
¢(x1 @ x, @ ... 8 xh) = (¥ (x2) @ w(xl) @ T, é... 8 xm)
is a Jordan *-isomorphism of M and ¢Ce1) = ey . Therefore,
G(Mh) # S(Mh). To prove the converse, let ¢ € GCMh). Since ¢ preserves
the minimal projections, ¢ maps the set {el, 22, ceay em} into itself,

If ¢ 1is not identical on the centre of M, we may suppose that
=e
¢(e1)

relation:

Then, amap ¢ : M,+ M, is defined by the following

2" 1 2

https://doi.org/10.1017/5000497270000304X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270000304X

186

This

Sadayuki Yamamuro

$(x 806 ...00 =¢((x8086...80e)

u

bp(x @00 ... & 0)e2

u

0@y(z) 806 ... 80 .

¢ 1is a Jordan *-isomorphism of M, onto M, .

Remark. G(Mh) = S(Mh) if and only if every bijective o. d.

homomorphism on H is a normal operator. This, and the related problems

on

(11

[2]

£3]

(43

£51]

[61

(71

L]

£93

L1701

d. homomorphisms, will be discussed in a subsequent paper.
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Added in proof. 14 January, 1986. The fact, on p.179, that T ¢ Z(B) ,
for a Banach lattice B , if and only if 7T commutes with all band
projections was given first by W.A.J. Luxemburg in his lecture at the

University of Arkansas in 1979.
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