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SYMMETRY GROUPS ON ORDERED BANACH SPACES

SADAYUKI YAMAMURO

A symmetry of an ordered Banach space is an order and norm

isomorphism which commutes with its ideal centre. A class of

ordered Banach spaces is introduced to show that, for a space

in this class, the group of symmetries is trivial if and only

if the space is lattice-ordered. When this group becomes

larger, the space approaches an antilattice. This phenomenon

is also investigated.

1. Preliminaries.

Let 5 be a real Banach space ordered by a closed and proper

positive cone B . Throughout this paper, B is always assumed to be

archimedean.

The cannonical half-norm N associated with B , due to [3], is

defined by

N(x) = inf {|\x + y\ \ : y e B*} for all x e B .

An element x e B is said to be orthogonally decomposable if there exist

elements y and z of B such that
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x = y - z , | \y\ | = N(x) and | | z | | = NC-x) .

If every element of B is orthogonally decomposable, then B is said

to be orthogonally decomposable. (See [J7].)

Let L(B) be the Banach space of all continuous linear operators

on B with the operator bound norm. The positive cone L(B}+ consists

of <f> in L(B) such that <\> (B ) c B . B is said to have the Robinson

property if

| | <f> | | = s u p { | 14> (x) | | : | | a;| | i 1 , x e B }

f o r a l l <j> e L(B)+ . ( S e e [ 7 6 ] . )

An /l/-automorphism of B is a bijective element (J> of LCB) such

that N($(x)) = N(x) for all x £ B. The set of all ^-automorphisms of

B is deonted by G(B) , which is obviously a group. The following two

facts have been proved in [77].

(1.1) When B is orthogonally decomposable, <j> e GCB) if and only

if | | <j> (x) | | = | |a;| | for all x e B and <j> is an o. d. isomorphism

(that is, <J> is a continuous bijection and § (x) = <|> (y) - §(z) is an

orthogonal decomposition of <j> (x) if and only if x = y - z is an

orthogonal decomposition of x ) .

(1.2) When B is orthogonally decomposable and has the Robinson

property, then <j> e G(B) if and only if <t> is a bipositive isometry.

The ideal centre of B is the set Z(B) of all elements T of

L(B) such that there exists a number X , depending on T, such that

-Xx < Tx < Xx for all x e B . For T e Z(B) , we can define a norm

| |r| I = inf{X > 0 : -Xx < Tx < Xx for all x e B+} .

A sufficient condition for I |T| I =1 |T| I for all T e. Z(B) is that
II I I Q II II

both the norms of S and B , the dual of B , are absolutely monotone.

(See [75], Lemma 2.3 and [4] , Theorem 1.3.1.) If this is the case, Z(B)

is an ordered Banach space with an archimedean order and the multiplicative

unit. Hence, by [JO], it is an abelian real Banach algebra. For the

spectrum Q of Z(B) , the Gelfand transform is an isometric, order and

algebraic isomorphism onto C(Q.) . Furthermore, by [7 5] , Corollary 1.13,

for every a « B , the map T **Ta is a lattice homomorphism of Z(B)
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onto a sublattice of B. Following [J5], we call B regular if

|M| = IM| for all T e ZiB),

An element $ of GiB) such that $T = T<$> for all T e ZiB) is

called a symmetry. (See [7] and [fj].) The set of all symmetries is

denoted by SiB) , which is obviously a subgroup of GiB),

The positive cone IB ) of the dual B is the set of all

f e B* such that fix) > 0 for all x e B+ . An element / of iB*)+

is said to be order-continuous if x = s\ip(x.) for an increasing net of

positive elements (x.) implies fix) = sup fix.) . The set of all
1s tr

order-continuous elements of (B ) is denoted by B . A s in the case of

C[(7,i] , it is possible that B can contain only the zero functional.

OG it *̂*

On the other hand, if the norm of B is order-continuous, then B = iB ) .

An element a of B is said to be {oa)-quasi-interior if
fia) = 0 and f e B°° imply f = 0 .

Now we set

B(G) = ix e B : $(x) = x for all

and

B(S) = [x e 5 : $(x) = x for all

If BTSyl contains an (oa)-quasi-interior point, B is said to be ff-finite;

otherwise, B is called ff-infinite.

2. Problems.

When B is a Banach lattice, we have

ZiB) = {T e L(B) : \Tx\ < X|x| for all xe B and some X}.

It is known ([2] , Theorem 3.2) that, when B is o-complete, J7 e ZfB,)

if and only if T commutes with all band projections.

(2.1) When B is a a-aomplete Banach lattice, we have SiB) = {1},

where 1 denotes the identity operator.

Proof. Let 4> e SiB). Since ZiB) contains all band projections,

ij> commutes with all band projections. Hence, <i> e ZiB) . Now, B is
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orthogonally decomposable, has the Robinson property and norm, together

with the dual norm, is absolutely monotone. Therefore, | |<j>| | = | | ((> | | = 1

and, hence, 0 i (j> Cx) £ x for all x e B . Similarly, 0 £ ((," (x) £ x

for all x e B , Hence, i)> = 1 .

Now, let B be a general ordered Banach space. The above fact

leads to the following question : is B lattice-ordered if S(B) = {1} ?

More generally, we shall consider the following problem.

Problem 1. Is B(S) lattice-ordered?

We shall show that the answer is affirmative for a special class

of ordered Banach spaces. This shows that, as B becomes more lattice-

like, S(B) will become smaller and B(S) will become larger. An

ordered Banach space is called an antilattice if z = sup(x}y) implies

x > y or x < y . (See [H] and [13].) Then, B(S) will be the

smallest when B is an antilattice. We consider this problem in the

following three forms.

Problem 2. If B is an ff-finite antilattice, is B(S) generated

by a single (oo)-quasi-interior point?

Problem 3. If B is an ff-infinite antilattice, do we have

B(S) = {0} ?

Problem 4. If S(B) = G(B), is B an antilattice?

3. Ordered Banach spaces of type (P).

Let B be an ordered Banach space. We suppose that there is a

family (P : a e B*} of projections (the idempotent elements of L(B) ).

An orthogonal decomposition a = b - a is called proper if the following

two conditions are satisfied:

(1) P,(a) = P (b) = 0 ;
DO

(2) If <f> (a) = a for some <j> e S(B) , then § (b) = b .

For every a e B , we s e t

B+ = ix £ B+ : f(x) = 0 if f e B0C and f(a) = 0 } .
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An ordered Banach space B is said to be of_ type (P) if it is

regular and it is equipped with a family {P : a e B } such that the

following conditions are satisfied:

(PI) P (B+) = B+ and a e B+ for all a e B+
a a a

(P2) If a e B(S) , then P < 1 ,

(PZ) Every element of B admits a_ proper decomposition.

Before proceding further, we give some examples.

Example 1. Banach lattices which are a-complete and in which the

norms are order-continuous are of type (P). In this case, P is

defined by

P (x) = sup (x A na) j
a nil

which is the band projection associated with {a} . B y definition, the

norms of Banach lattices are absolutely monotone. Hence B is regular.

Since the norm is order-continuous, B = (B ) , and B coincides

with the "positive bipolar" considered in[74] where the equality (PI)

has been proved. (P2) and (P3) follow immediately from (2.1) and the

basic properties of band projections.

Example 2. Let M be a von Neumann algebra and B = M be the

ordered Banach space of all hermitian elements of M. Then B is of

type (P). First note that, this is obviously regular. For each a e B ,

define P by P (x) = s(a)xs(a), where s(a) is the support of a.

Since B°° = (M )+ , the positive part of the predual M^ f(a) = 0 for

f e B implies f(s(a)) = 0 , and the relation (PI) can be proved

directly or by a modification of a result in [5], p. 357. As to (P2) ,

we first note that T e Z(B) if and only if Tl n M e M' and Tx = x-Tl

for every x e B . For the proof of this fact, see, for instance, [7] .

Since M is orthogonally decomposable and has the Robinson property,

GCB) is the set of all bipositive isometries on frfr . In other words,

G(B) is the set of restrictions, to if , of all Jordan ^-isomorphisms
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(f> of M such that $(1) = 1 , Furthermore, it follows from the above

characterization of Z(B) that ij> e S(B) if and only if <j> is the

restriction of a Jordan *-isomorphism of M which is identical on the

centre M n M' . Hence, we have B(S) = CM n M') . Therefore, if

a e B(S) , then s(a) is an central projection. Hence, P (x) < x for

all x e B . Finally, the condition CP3) is satisfied because the usual

orthogonal decomposition a - a+ - a~ , a+ cr = 0 , is a proper

decomposition.

Example 3. Let M be a von Neumann algebra on a Hilbert space R

and suppose that there is a cyclic and separating vector £ e R for M.

Then, by the Tomita-Takesaki theory, there are a conjugation operator J

and a modular operator A associated with ? . The real part of H ,

is then an ordered Hilbert space ordered by the "natural cone"

H+ = {A " x £ : x e M+} .o

(See [6] and [9].) This is of type (P). Since the norm is absolutely

monotone, a is regular. We define P. by P.. = Prj(pr) , where p~

is the projection on the subspace [M'£] and j(p ) = Jp-J . By [9] ,

Theorems 4.5 and 4.6, we have

PJR+) = {n e R+ : (r\,p) = 0 if p e R+ and (f>, V = 0 } .

Therefore, we have the equality (PI) if the norm is order-continuous.

To prove this, suppose that ri = sup (r\.) for an increasing net (T\.)a R .

Then, -n £ n. < n . The element n can be assumed to be cyclic and

separating, because otherwise we can take n + (1 - p )j(l - p ) 5

instead of n . Since n e H+ , R is equal to the closure of

{A 4 x n : x e M } and there is an order isomorphism * of M onto the

set

(p e a : -An < p < An for some A}
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defined by $(x) = A * x n . ([93 , Theorem 2.7.) Since (n .) is
n •*-

contained in this set, there are x. e M and x e M such that

$(xJ = n- i <b(x) = r\ and x = sup (x.) . Furthermore, | |x.£ - XE, \
*ls 1s Is Is

for every £ e # . Then, since | | JCx. - XE, )\ | •> 0 ,

I In- - nil = (A " f a . - x)r\ , b4(x. - x)r\)

= (&2(x. - x)r) J (x. - X)T\)

= (J(x. - x)r\ , (x. -
^ t

< | | JCx. - x)r\\ I • | | (x. - x)r\\ | -»• 0 .

is tr

To prove (P2), we start with a result in [7] that Z(fT) = (M n M')

On the other hand, G(FT) is obviously the set of all unitary operators

u e L(E) such that u(H+) = H+ . Hence, S(H+) is the set of all

unitary operators u in R(M,M') , the von Neumann algebra generated by

M and M' , such that u(H+) = H+ . Now, suppose that £ eff(S) . Then,

g = 5 for all unitary element u of M, because uj (u) e S(H^) .
Since j(u)E, = u*E, , we have [M'E,] = [Af£] , which means that p_ is a

central projection. Therefore, p < 1 , and, hence, P < 1. The

condition (PS/) is satisfied because the usual orthogonal decomposition

t, = %, - £ j (£ j E, ) = 0 , is a proper decomposition.

4. Problems 1, 2 and 3.

We start with a lemma.

(4.1) Suppose that B is an ordered Banach space which is regular

+ 2
and B is generating. Then, if B is an antilattice and 0 < P = P < 1,
then P = 0 or P = 1,

Proof. Since P e Z(B) and 1 - P e Z(B) , for each a e. B+ we

have that Pa and (1 - P)a belong to a lattice-ordered subset of B ,

because B is regular. Then, since B is an antilattice, Pa and
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(1 - P)a must be comparable, that is, Pa < (1 - P)a or Pa 2. (1 ~ P)a.

It then follows that, for every a e. B , we have either Pa = 0 or

Pa = a . Suppose that there are nonzero elements a and b of

B+ such that Pa = 0 and Pb = b . Then, P(a + b) = b and a + b + b,

which is a contradiction. Hence, since B is generating, we have either

P = 0 or P = 1.

We now give the answers to the first three problems when B is of

type (P) ,

(4.2) Let B be an ordered Banach space of type (P).

(1). B(S) is lattice-ordered.

(2). If B is an E-finite antilattice, B(S) is generated by

an (oc)-quasi-interior point.

(3). If B is an E-infinite antilattice, B(S) = {0} .

Proof. (1). Let a e B(S) and a = b - a be a proper

decomposition. By (P3), b e B(S) . Therefore, P, < 1 by (P2).

Furthermore, (PI) implies P, > 0 . Therefore, if x > a and x > 0 ,

we have b = P,a < P, x < x . This means b = sup (a, 0).

(2). Since B(S) is a sublattice of an antilattice, it is totally

ordered. Hence it is generated by a single element. Since B is

#-finite, the element must be an (oc)-quasi-interior point.

(3). Suppose that a e B(S) and a ̂  0. By (P3), we can

assume that a e. B+ . By (PI) and (P2) , we have 0 < p < 1 . Hence

by (4.1) , we have P = 0 or P = 1 . However, by (PI), p = 0

implies a = 0 , a contradiction. Hence, P = 1 , or, equivalently,

B = B by (PI). Hence, a is an (oc)-quasi-interior point. This

contradicts the assumption.

An immediate consequence of (4.2) (1) is the following fact.

(4.3) When B is an ordered Banach space of type (P), S(B) = (i)

implies that B is lattice-ordered.
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5. Problem 4.

The answer to this problem is in the negative. We shall give a

negative example when B is a finite-dimensional von Neumann algebra. We

recall that every finite-dimensional von Neumann algebra A? is a direct

sum

M = M. # M, 9 ... 9 M
kl k2 m

where M, is the algebra of all k x k matrices. The set

{/c.j kn,... k } characterizes the structure of M . We shall show that
1 H m

G(M ) = S(M ) if and only if the numbers in this set are different.

(5.1) Let M be a finite-dimensional von Neumann algebra. Then,

G(M ) = S(M) if and only if M is a direct sum of factors which are

not mutually Jordan *-isomorphic.

Proof. There are factors M (n = 1, 2, ... m) such that M is a

direct sum : M = M^ 9 Mn 9 . . . 9 M . Since the centre of M is the
1 2 m

direct sum of centres of M , the central projections of M are linear

combinations of the following projections:

e. = 1 9 0 9 ... 9 , e0 = 0 9 1 9 ... 9 0,
A a

e =09...9091.
m

Now, suppose, for instance, that M_ and Af» are Jordan *-isomorphic and

i|i is the isomorphism. Then, the map defined by

<j> Cx, 9 xn & . . . 9 x ) = Cili" (x J 9 ill (xJ 9 x_ 9 . .. 9 x )
1 2 m 2 1 3 m

is a Jordan ^-isomorphism of M and <j> Ce-) = e, . Therefore,

G(n) ^ S(M ). To prove the converse, let <j> e GCM ). Since <j> preserves

the minimal projections, <j> maps the set {e.j e , .,., e } into itself.

j ci m

If <j> is not identical on the centre of M, we may suppose that

^(e*) = e. . Then, a map i|i : M~ -*• Mo is defined by the following

relation:
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$(x Q 0 & . . . 9 0) = $C(x § 0 9 . . . 9 0)e2)

= i/Cx 9 0 9 ... 9 0)e0
Li

= 0 9 4i(x) 9 0 9 ... 9 0 .

This i|/ i s a Jordan ^-isomorphism of M onto Mo .

Remark. G(M) = S(M) i f and only i f every b i jec t ive o. d.

homomorphism on H i s a normal operator. This, and the re la ted problems

on o. d. homomorphisms, w i l l be discussed in a subsequent paper.
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Added in proof. 14 January, 1986. The fact, on p.179, that T e Z(S)

for a Banach lattice B , if and only if T commutes with all band

projections was given first by W.A.J. Luxemburg in his lecture at the

University of Arkansas in 1979.
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