Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-02-03T02:45:42.113Z Has data issue: false hasContentIssue false

There's no such thing as a free lunch: A computational perspective on the costs of motivation

Published online by Cambridge University Press:  31 January 2025

Eliana Vassena*
Affiliation:
Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands [email protected]
Jacqueline Gottlieb
Affiliation:
Department of Neuroscience and the Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA [email protected]
*
*Corresponding author.

Abstract

Understanding the psychological computations underlying motivation can shed light onto motivational constructs as emergent phenomena. According to Murayama and Jach, reward-learning is a key candidate mechanism. However, there's no such thing as a free lunch: Not only benefits (like reward), but also costs inherent to motivated behaviors (like effort, or uncertainty) are an essential part of the picture.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bijleveld, E. (2023). The ebb and flow of cognitive fatigue. Trends in Cognitive Sciences, 27, 11091110.CrossRefGoogle ScholarPubMed
Brehm, J. W., & Self, E. A. (1989). The intensity of motivation. Annual Review of Psychology, 40, 109131.CrossRefGoogle ScholarPubMed
Caligiore, D., Silvetti, M., D'Amelio, M., Puglisi-Allegra, S., & Baldassarre, G. (2020). Computational modeling of catecholamines dysfunction in Alzheimer's disease at pre-plaque stage. Journal of Alzheimer's Disease, 77, 275290.CrossRefGoogle ScholarPubMed
Camerer, C. F. (2008). Neuroeconomics: Opening the gray box. Neuron, 60, 416419.CrossRefGoogle ScholarPubMed
Dora, J., van Hooff, M. L. M., Geurts, S. A. E., Kompier, M. A. J., & Bijleveld, E. (2022). The effect of opportunity costs on mental fatigue in labor/leisure trade-offs. Journal of Experimental Psychology: General, 151, 695710.CrossRefGoogle ScholarPubMed
Gollwitzer, P. M. (2018). The goal concept: A helpful tool for theory development and testing in motivation science. Motivation Science, 4, 185205.CrossRefGoogle Scholar
Husain, M., & Roiser, J. P. (2018). Neuroscience of apathy and anhedonia: A transdiagnostic approach. Nature Reviews Neuroscience, 19, 470484.CrossRefGoogle ScholarPubMed
Kappes, C., & Schattke, K. (2022). You have to let go sometimes: Advances in understanding goal disengagement. Motivation and Emotion, 46, 735751.CrossRefGoogle ScholarPubMed
Kurzban, R., Duckworth, A., Kable, J. W., & Myers, J. (2013). An opportunity cost model of subjective effort and task performance. Behavioral and Brain Sciences, 36(6), 661679.CrossRefGoogle Scholar
Matthews, J., Pisauro, M. A., Jurgelis, M., Müller, T., Vassena, E., Chong, T. T. J., & Apps, M. A. (2023). Computational mechanisms underlying the dynamics of physical and cognitive fatigue. Cognition, 240, 105603.CrossRefGoogle ScholarPubMed
Müller, T., Klein-Flügge, M. C., Manohar, S. G., Husain, M., & Apps, M. A. J. (2021). Neural and computational mechanisms of momentary fatigue and persistence in effort-based choice. Nature Communications, 12, 4593.CrossRefGoogle ScholarPubMed
Silvestrini, N. (2017). Psychological and neural mechanisms associated with effort-related cardiovascular reactivity and cognitive control: An integrative approach. International Journal of Psychophysiology, 119, 1118.CrossRefGoogle ScholarPubMed
Silvestrini, N., Musslick, S., Berry, A. S., & Vassena, E. (2023). An integrative effort: Bridging motivational intensity theory and recent neurocomputational and neuronal models of effort and control allocation. Psychological Review, 130, 10811103.CrossRefGoogle ScholarPubMed
Silvetti, M., Seurinck, R., & Verguts, T. (2011). Value and prediction error in medial frontal cortex: Integrating the single-unit and systems levels of analysis. Frontiers in Human Neuroscience, 5, 75.CrossRefGoogle ScholarPubMed
Silvetti, M., Seurinck, R., & Verguts, T. (2013). Value and prediction error estimation account for volatility effects in ACC: A model-based fMRI study. Cortex, 49, 16271635.CrossRefGoogle ScholarPubMed
Silvetti, M., Vassena, E., Abrahamse, E., & Verguts, T. (2018). Dorsal anterior cingulate-brainstem ensemble as a reinforcement meta-learner. PLoS Computational Biology, 14, e1006370.CrossRefGoogle ScholarPubMed
Silvetti, M., Baldassarre, G., & Caligiore, D. (2019) A computational hypothesis on how serotonin regulates catecholamines in the pathogenesis of depressive apathy. In Cutsuridis, V. (Ed.), Multiscale models of brain disorders (pp. 127134). Springer International Publishing. doi: 10.1007/978-3-030-18830-6_12CrossRefGoogle Scholar
Silvetti, M., Lasaponara, S., Daddaoua, N., Horan, M., & Gottlieb, J. (2023). A reinforcement meta-learning framework of executive function and information demand. Neural Networks, 157, 103113.CrossRefGoogle ScholarPubMed
Sutton, R. S., & Barto, A. G. (1998) Reinforcement learning: An Introduction (Vol. 1). MIT press Cambridge.Google Scholar
Verguts, T., Vassena, E., & Silvetti, M. (2015). Adaptive effort investment in cognitive and physical tasks: A neurocomputational model. Frontiers in Behavioral Neuroscience, 9, 57.CrossRefGoogle ScholarPubMed
Westbrook, A., & Braver, T. S. (2015). Cognitive effort: A neuroeconomic approach. Cognitive Affective & Behavioral Neuroscience, 15, 395415.CrossRefGoogle ScholarPubMed