Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-02-03T01:00:57.487Z Has data issue: false hasContentIssue false

Exploring novelty to unpack the black-box of motivation

Published online by Cambridge University Press:  31 January 2025

Nico Bunzeck*
Affiliation:
Department of Psychology, and Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany [email protected] https://www.ipsy1.uni-luebeck.de/
Sebastian Haesler
Affiliation:
Neuroelectronics Research Flanders (NERF), and Department of Neuroscience, KU Leuven, Leuven, Belgium [email protected] https://haeslerlab.com
*
*Corresponding author.

Abstract

Murayama and Jach point out that we do not sufficiently understand the constructs and mental computations underlying higher-order motivated behaviors. Although this may be generally true, we would like to add and contribute to the discussion by outlining how interdisciplinary research on novelty-evoked exploration has advanced the study of learning and curiosity.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubret, A., Matignon, L., & Hassas, S. (2023). An information-theoretic perspective on intrinsic motivation in reinforcement learning: A survey. Entropy, 25(2), 327. https://doi.org/10.3390/e25020327CrossRefGoogle ScholarPubMed
Bunzeck, N., Doeller, C. F., Fuentemilla, L., Dolan, R. J., & Duzel, E. (2009). Reward motivation accelerates the onset of neural novelty signals in humans to 85 milliseconds. Current Biology, 19(15), 12941300.CrossRefGoogle ScholarPubMed
Bunzeck, N., Guitart-Masip, M., Dolan, R. J., & Düzel, E. (2011). Contextual novelty modulates the neural dynamics of reward anticipation. The Journal of Neuroscience, 31(36), 1281612822. https://doi.org/10.1523/JNEUROSCI.0461-11.2011CrossRefGoogle ScholarPubMed
Bunzeck, N., Guitart-Masip, M., Dolan, R. J., & Duzel, E. (2014). Pharmacological dissociation of novelty responses in the human brain. Cerebral Cortex, 24(5), 13511360. https://doi.org/10.1093/cercor/bhs420CrossRefGoogle ScholarPubMed
Dahl, M. J., Mather, M., Düzel, S., Bodammer, N. C., Lindenberger, U., Kühn, S., & Werkle-Bergner, M. (2019). Rostral locus coeruleus integrity is associated with better memory performance in older adults. Nature Human Behaviour, 3(11), 12031214. https://doi.org/10.1038/s41562-019-0715-2CrossRefGoogle ScholarPubMed
Dahl, M. J., Kulesza, A., Werkle-Bergner, M., & Mather, M. (2023). Declining locus coeruleus–dopaminergic and noradrenergic modulation of long-term memory in aging and Alzheimer's disease. Neuroscience & Biobehavioral Reviews, 153, 105358. https://doi.org/10.1016/j.neubiorev.2023.105358CrossRefGoogle ScholarPubMed
Düzel, E., Bunzeck, N., Guitart-Masip, M., & Düzel, S. (2010). NOvelty-related Motivation of Anticipation and exploration by Dopamine (NOMAD): Implications for healthy aging. Neuroscience & Biobehavioral Reviews, 34(5), 660669. https://doi.org/10.1016/j.neubiorev.2009.08.006CrossRefGoogle ScholarPubMed
Filimon, F., Nelson, J. D., Sejnowski, T. J., Sereno, M. I., & Cottrell, G. W. (2020). The ventral striatum dissociates information expectation, reward anticipation, and reward receipt. Proceedings of the National Academy of Sciences, 117(26), 1520015208. https://doi.org/10.1073/pnas.1911778117CrossRefGoogle ScholarPubMed
Ghazizadeh, A., & Hikosaka, O. (2022). Salience memories formed by value, novelty and aversiveness jointly shape object responses in the prefrontal cortex and basal ganglia. Nature Communications, 13(1), 6338. https://doi.org/10.1038/s41467-022-33514-3CrossRefGoogle ScholarPubMed
Gruber, M. J., Gelman, B. D., & Ranganath, C. (2014). States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit. Neuron, 84, 486496. http://doi.org/10.1016/j.neuron.2014.08.060CrossRefGoogle ScholarPubMed
Guitart-Masip, M., Bunzeck, N., Stephan, K. E., Dolan, R. J., & Düzel, E. (2010). Contextual novelty changes reward representations in the Striatum. The Journal of Neuroscience, 30(5), 17211726. https://doi.org/10.1523/JNEUROSCI.5331-09.2010CrossRefGoogle ScholarPubMed
Kakade, S., & Dayan, P. (2002). Dopamine: Generalization and bonuses. Neural Networks, 15(4–6), 549559. https://doi.org/10.1016/S0893-6080(02)00048-5CrossRefGoogle ScholarPubMed
Kang, M. J., Hsu, M., Krajbich, I. M., Loewenstein, G., McClure, S. M., Wang, J. T., & Camerer, C. F. (2009). The wick in the candle of learning: Epistemic curiosity activates reward circuitry and enhances memory. Psychological Science, 20(8), 963973. http://doi.org/10.1111/j.1467-9280.2009.02402.xCrossRefGoogle ScholarPubMed
Kesby, J. P., Eyles, D. W., McGrath, J. J., & Scott, J. G. (2018). Dopamine, psychosis and schizophrenia: The widening gap between basic and clinical neuroscience. Translational Psychiatry, 8(1), 112. https://doi.org/10.1038/s41398-017-0071-9CrossRefGoogle ScholarPubMed
Krebs, R. M., Schott, B. H., & Düzel, E. (2009). Personality traits are differentially associated with patterns of reward and novelty processing in the human substantia nigra/ventral tegmental area. Biological Psychiatry, 65(2), 103110. https://doi.org/10.1016/j.biopsych.2008.08.019CrossRefGoogle ScholarPubMed
Litman, J. A., & Mussel, P. (2013). Validity of the interest-and deprivation-type epistemic curiosity model in Germany. Journal of Individual Differences, 34(2), 5968. https://doi.org/10.1027/1614-0001/a000100CrossRefGoogle Scholar
Modirshanechi, A., Xu, H. A., Lin, W.-H., Herzog, M. H., & Gerstner, W. (2022). The curse of optimism: A persistent distraction by novelty (p. 2022.07.05.498835). bioRxiv. https://doi.org/10.1101/2022.07.05.498835CrossRefGoogle Scholar
Modirshanechi, A., Kondrakiewicz, K., Gerstner, W., & Haesler, S. (2023). Curiosity-driven exploration: Foundations in neuroscience and computational modeling. Trends in Neurosciences, 46, 10541066. https://doi.org/10.1016/j.tins.2023.10.002CrossRefGoogle ScholarPubMed
Morrens, J., Aydin, Ç., Janse van Rensburg, A., Esquivelzeta Rabell, J., & Haesler, S. (2020). Cue-evoked dopamine promotes conditioned responding during learning. Neuron, 106, 142153.e7. https://doi.org/10.1016/j.neuron.2020.01.012CrossRefGoogle ScholarPubMed
Qi, S., Schumann, G., Bustillo, J., Turner, J. A., Jiang, R., Zhi, D., … IMAGEN Consortium. (2021). Reward processing in novelty seekers: A transdiagnostic psychiatric imaging biomarker. Biological Psychiatry, 90(8), 529539. https://doi.org/10.1016/j.biopsych.2021.01.011CrossRefGoogle ScholarPubMed
Sokolov, E. N. (1963). Higher nervous functions: The orienting reflex. Annual Review of Physiology, 25(1), 545580. https://doi.org/10.1146/annurev.ph.25.030163.002553CrossRefGoogle ScholarPubMed
Steiger, T. K., Weiskopf, N., & Bunzeck, N. (2016). Iron level and myelin content in the ventral striatum predict memory performance in the aging brain. The Journal of Neuroscience, 36(12), 35523558. https://doi.org/10.1523/JNEUROSCI.3617-15.2016CrossRefGoogle ScholarPubMed
Steiger, T. K., Sobczak, A., Reineke, R., & Bunzeck, N. (2022). Novelty processing associated with neural beta oscillations improves recognition memory in young and older adults. Annals of the New York Academy of Sciences, 1511(1), 228243. https://doi.org/10.1111/nyas.14750CrossRefGoogle ScholarPubMed
Takeuchi, T., Duszkiewicz, A. J., Sonneborn, A., Spooner, P. A., Yamasaki, M., Watanabe, M., … Morris, R. G. M. (2016). Locus coeruleus and dopaminergic consolidation of everyday memory. Nature, 537(7620), 357362. https://doi.org/10.1038/nature19325CrossRefGoogle ScholarPubMed
Véronneau-Veilleux, F., Robaey, P., Ursino, M., & Nekka, F. (2022). A mechanistic model of ADHD as resulting from dopamine phasic/tonic imbalance during reinforcement learning. Frontiers in Computational Neuroscience, 16, 849323. https://doi.org/10.3389/fncom.2022.849323CrossRefGoogle ScholarPubMed
Wang, S.-H., Redondo, R. L., & Morris, R. G. M. (2010). Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory. Proceedings of the National Academy of Sciences, 107(45), 1953719542. https://doi.org/10.1073/pnas.1008638107CrossRefGoogle Scholar
Wilson, F. A., & Rolls, E. T. (1990). Learning and memory is reflected in the responses of reinforcement-related neurons in the primate basal forebrain. Journal of Neuroscience, 10(4), 12541267. https://doi.org/10.1523/JNEUROSCI.10-04-01254.1990CrossRefGoogle ScholarPubMed
Wittmann, B. C., Daw, N. D., Seymour, B., & Dolan, R. J. (2008). Striatal activity underlies novelty-based choice in humans. Neuron, 58(6), 967973. https://doi.org/10.1016/j.neuron.2008.04.027CrossRefGoogle ScholarPubMed