Article contents
Resource-rationality beyond individual minds: the case of interactive language use
Published online by Cambridge University Press: 11 March 2020
Abstract
Resource-rational approaches offer much promise for understanding human cognition, especially if they can reach beyond the confines of individual minds. Language allows people to transcend individual resource limitations by augmenting computation and enabling distributed cognition. Interactive language use, an environment where social rational agents routinely deal with resource constraints together, offers a natural laboratory to test resource-rationality in the wild.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 2020
References
Bender, A. & Beller, S. (2014) Mangarevan invention of binary steps for easier calculation. Proceedings of the National Academy of Sciences 111(4):1322–27. doi:10.1073/pnas.1309160110.CrossRefGoogle ScholarPubMed
Böckler, A., Knoblich, G. & Sebanz, N. (2010) Socializing cognition. In: Towards a theory of thinking, ed. Glatzeder, B., Goel, V. & Müller, A., pp. 233–50. doi:10.1007/978-3-642-03129-8_16. Heidelberg.CrossRefGoogle Scholar
Clark, A. (1998) Magic words: How language augments human computation. In: Language and thought: Interdisciplinary themes, ed. Carruthers, P. & Boucher, J., pp. 162–83. Cambridge University Press.CrossRefGoogle Scholar
Clark, A. (2006) Material symbols. Philosophical Psychology 19(3):291–307. doi:10.1080/09515080600689872.CrossRefGoogle Scholar
Dingemanse, M. (2017) On the margins of language: Ideophones, interjections and dependencies in linguistic theory. In: Dependencies in language, ed. Enfield, N. J., pp. 195–202. doi:10.5281/zenodo.573781. Language Science Press.Google Scholar
Dingemanse, M., Roberts, S. G., Baranova, J., Blythe, J., Drew, P., Floyd, S., Gisladottir, R. S., Kendrick, K. H., Levinson, S. C., Manrique, E., Rossi, G. & Enfield, N. J. (2015) Universal principles in the repair of communication problems. PLoS One 10(9):e0136100. doi:10.1371/journal.pone.0136100.CrossRefGoogle ScholarPubMed
Enfield, N. J. (2013) Relationship thinking: Agency, enchrony, and human sociality. Oxford University Press.CrossRefGoogle Scholar
Fox Tree, J. E. (1995) The effects of false starts and repetitions on the processing of subsequent words in spontaneous speech. Journal of Memory and Language 34(6):709–38. doi:10.1006/jmla.1995.1032.CrossRefGoogle Scholar
Fox Tree, J. E. (2001) Listeners’ uses of um anduh in speech comprehension. Memory & Cognition 29(2):320–26. doi:10.3758/BF03194926.CrossRefGoogle ScholarPubMed
Frank, M. C. & Goodman, N. D. (2012) Predicting pragmatic reasoning in language games. Science 336(6084):998. doi:10.1126/science.1218633.CrossRefGoogle ScholarPubMed
Fusaroli, R., Tylén, K., Garly, K., Steensig, J., Christiansen, M. H. & Dingemanse, M. (2017) Measures and mechanisms of common ground: Backchannels, conversational repair, and interactive alignment in free and task-oriented social interactions. In: Proceedings of the 39th annual meeting of the cognitive science society, ed. Gunzelmann, G., Howes, A., Tenbrink, T. & Davelaar, E., pp. 2055–60.Google Scholar
Heyes, C. (2018) Cognitive gadgets: The cultural evolution of thinking. Harvard University Press.CrossRefGoogle Scholar
Hirsch, J., Adam Noah, J., Zhang, X., Dravida, S. & Ono, Y. (2018) A cross-brain neural mechanism for human-to-human verbal communication. Social Cognitive and Affective Neuroscience 13(9):907–20. doi:10.1093/scan/nsy070.CrossRefGoogle ScholarPubMed
Kempson, R., Cann, R., Gregoromichelaki, E. & Chatzikyriakidis, S. (2016) Language as mechanisms for interaction. Theoretical Linguistics 42(3–4):203–76. doi:10.1515/tl-2016-0011.CrossRefGoogle Scholar
Konvalinka, I. & Roepstorff, A. (2012) The two-brain approach: How can mutually interacting brains teach us something about social interaction? Frontiers in Human Neuroscience 6:215. doi:10.3389/fnhum.2012.00215.CrossRefGoogle ScholarPubMed
Lestrade, S. (2017) Unzipping Zipf's law. PLoS One 12(8):e0181987. doi:10.1371/journal.pone.0181987.CrossRefGoogle ScholarPubMed
Levinson, S. C. (2000) Presumptive meanings: The theory of generalized conversational implicature. MIT Press.CrossRefGoogle Scholar
Levinson, S. C. (2016) Turn-taking in human communication – origins and implications for language processing. Trends in Cognitive Sciences 20(1):6–14. doi:10.1016/j.tics.2015.10.010.CrossRefGoogle ScholarPubMed
Piantadosi, S. T., Tily, H. & Gibson, E. (2012) The communicative function of ambiguity in language. Cognition 122(3):280–91. doi:10.1016/j.cognition.2011.10.004.CrossRefGoogle ScholarPubMed
Risko, E. F. & Gilbert, S. J. (2016) Cognitive offloading. Trends in Cognitive Sciences 20(9):676–88. doi:10.1016/j.tics.2016.07.002.CrossRefGoogle ScholarPubMed
Roberts, S. G. & Levinson, S. C. (2017) Conversation, cognition and cultural evolution: A model of the cultural evolution of word order through pressures imposed from turn taking in conversation. Interaction Studies 18(3):404–31. doi:10.1075/is.18.3.06robCrossRefGoogle Scholar
Schilbach, L., Timmermans, B., Reddy, V., Costall, A., Bente, G., Schlicht, T. & Vogeley, K. (2013) Toward a second-person neuroscience. Behavioral and Brain Sciences 36(4):393–414. doi:10.1017/S0140525X12000660.CrossRefGoogle Scholar
Van Rooij, I., Kwisthout, J., Blokpoel, M., Szymanik, J., Wareham, T. & Toni, I. (2011) Intentional communication: Computationally easy or difficult? Frontiers in Human Neuroscience 5:1–18. doi:10.3389/fnhum.2011.00052CrossRefGoogle ScholarPubMed
Waldron, V. R. & Cegala, D. J. (1992) Assessing conversational cognition: Levels of cognitive theory and associated methodological requirements. Human Communication Research 18(4):599–622. doi:10.1111/j.1468-2958.1992.tb00573.x.CrossRefGoogle Scholar
Zipf, G. K. (1949) Human behavior and the principle of least effort: An introduction to human ecology. Addison-Wesley Press.Google Scholar
- 7
- Cited by
Target article
Resource-rational analysis: Understanding human cognition as the optimal use of limited computational resources
Related commentaries (25)
Another claim for cognitive history
Beginning with biology: “Aspects of cognition” exist in the service of the brain's overall function as a resource-regulator
Can resources save rationality? “Anti-Bayesian” updating in cognition and perception
Cognitively bounded rational analyses and the crucial role of theories of subjective utility
Computational limits don't fully explain human cognitive limitations
Generalization of the resource-rationality principle to neural control of goal-directed movements
Heuristics and the naturalistic fallacy
Holistic resource-rational analysis
Multiple conceptions of resource rationality
Opportunities and challenges integrating resource-rational analysis with developmental perspectives
Opportunities for emotion and mental health research in the resource-rationality framework
Optimal, resource-rational or sub-optimal? Insights from cognitive development
Representing utility and deploying the body
Resource-rational analysis versus resource-rational humans
Resource-rationality and dynamic coupling of brains and social environments
Resource-rationality as a normative standard of human rationality
Resource-rationality beyond individual minds: the case of interactive language use
Sampling as a resource-rational constraint
The biology of emotion is missing
The evolutionary foundations of resource-rational analysis
The importance of constraints on constraints
Towards a quantum-like cognitive architecture for decision-making
Uncovering cognitive constraints is the bottleneck in resource-rational analysis
What are the appropriate axioms of rationality for reasoning under uncertainty with resource-constrained systems?
What is the purpose of cognition?
Author response
Advancing rational analysis to the algorithmic level