Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T07:03:36.402Z Has data issue: false hasContentIssue false

Glutamate and norepinephrine interaction: Relevance to higher cognitive operations and psychopathology

Published online by Cambridge University Press:  05 January 2017

Chadi G. Abdallah
Affiliation:
Clinical Neurosciences Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT 06516 Department of Psychiatry, Yale University School of Medicine, New Haven, CT [email protected]@[email protected]@yale.edu
Lynnette A. Averill
Affiliation:
Clinical Neurosciences Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT 06516 Department of Psychiatry, Yale University School of Medicine, New Haven, CT [email protected]@[email protected]@yale.edu
John H. Krystal
Affiliation:
Clinical Neurosciences Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT 06516 Department of Psychiatry, Yale University School of Medicine, New Haven, CT [email protected]@[email protected]@yale.edu
Steven M. Southwick
Affiliation:
Clinical Neurosciences Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT 06516 Department of Psychiatry, Yale University School of Medicine, New Haven, CT [email protected]@[email protected]@yale.edu
Amy F. T. Arnsten
Affiliation:
Clinical Neurosciences Division, VA National Center for PTSD, VA Connecticut Healthcare System, West Haven, CT 06516 Department of Neurobiology, Yale University School of Medicine, New Haven, CT [email protected]

Abstract

Mather and colleagues present an impressive interdisciplinary model of arousal-induced norepinephrine release and its role in selectively enhancing/inhibiting perception, attention, and memory consolidation. This model will require empirical investigation to test its validity and generalizability beyond classic norepinephrine circuits because it simplifies extremely complex and heterogeneous actions including norepinephrine mechanisms related to higher cognitive circuits and psychopathology.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnsten, A. F. (2015) Stress weakens prefrontal networks: Molecular insults to higher cognition. Nature Neuroscience 18:1376–85.Google Scholar
Arnsten, A. F. T., Raskind, M., Taylor, F. B. & Connor, D. F. (2015b) The effects of stress exposure on prefrontal cortex: Translating basic research into successful treatments for post-traumatic stress disorder. Neurobiology of Stress 1:8999.Google Scholar
Arnsten, A. F. T. & Wang, M. (2016) Targeting prefrontal cortical systems for drug development: Potential therapies for cognitive disorders. Annual Review of Pharmacology and Toxicology 56:339–60. doi: 10.1146/annurev-pharmtox-010715-103617.Google Scholar
Arnsten, A. F. T., Wang, M. & Paspalas, C. D. (2012) Neuromodulation of thought: Flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron 76(1):223–39.Google Scholar
Birnbaum, S. B., Yuan, P., Wang, M., Vijayraghavan, S., Bloom, A., Davis, D., Gobeske, K. T., Sweatt, J. D., Manji, H. K. & Arnsten, A. F. T. (2004) Protein kinase C overactivity impairs prefrontal cortical regulation of working memory. Science 306:882–84.Google Scholar
Bremner, J. D., Innis, R. B., Ng, C. K., Staib, L. H., Salomon, R. M., Bronen, R. A., Duncan, J., Southwick, S. M., Krystal, J. H., Rich, D., Zubal, G., Dey, H., Soufer, R. & Charney, D. S. (1997) Positron emission tomography measurement of cerebral metabolic correlates of yohimbine administration in combat-related posttraumatic stress disorder. Archives of General Psychiatry 54:246–54.Google Scholar
Chambers, R. A., Bremner, J. D., Moghaddam, B., Southwick, S. M., Charney, D. S. & Krystal, J. H. (1999) Glutamate and post-traumatic stress disorder: Toward a psychobiology of dissociation. Seminars in Clinical Neuropsychiatry 4:274–81.Google Scholar
Ferry, B., Roozendaal, B. & McGaugh, J. L. (1999a) Basolateral amygdala noradrenergic influences on memory storage are mediated by an interaction between beta- and alpha-1-adrenoceptors. The Journal of Neuroscience 19:5119–23.Google Scholar
Ferry, B., Roozendaal, B. & McGaugh, J. L. (1999b) Involvement of alpha-1-adrenoceptors in the basolateral amygdala in modulation of memory storage. European Journal of Pharmacology 372:916.CrossRefGoogle Scholar
Klimek, V., Stockmeier, C., Overholser, J., Meltzer, H. Y., Kalka, S., Dilley, G. & Ordway, G. A. (1997) Reduced levels of norepinephrine transporters in the locus coeruleus in major depression. Journal of Neuroscience 17:8451–58.Google Scholar
Krystal, J. H., Sanacora, G. & Duman, R. S. (2013) Rapid-acting glutamatergic antidepressants: The path to ketamine and beyond. Biological Psychiatry 73:1133–41.Google Scholar
Li, B.-M. & Mei, Z.-T. (1994) Delayed response deficit induced by local injection of the alpha-2 adrenergic antagonist yohimbine into the dorsolateral prefrontal cortex in young adult monkeys. Behavioral and Neural Biology 62:134–39.CrossRefGoogle ScholarPubMed
Mouradian, R. D., Seller, F. M. & Waterhouse, B. D. (1991) Noradrenergic potentiation of excitatory transmitter action in cerebrocortical slices: Evidence of mediation by an alpha1-receptor-linked second messenger pathway. Brain Research 546:8395.Google Scholar
Southwick, S. M., Bremner, J. D., Rasmusson, A., Morgan, C. A. R., Arnsten, A. & Charney, D. S. (1999) Role of norepinephrine in the pathophysiology and treatment of posttraumatic stress disorder. Biological Psychiatry 46:1192–204.Google Scholar
Southwick, S. M., Krystal, J. H., Morgan, C. A., Johnson, D., Nagy, L. M., Nicolaou, A., Heninger, G. R. & Charney, D. S. (1993) Abnormal noradrenergic function in posttraumatic stress disorder. Archives of General Psychiatry 50:266–74.Google Scholar
Wang, M., Ramos, B., Paspalas, C., Shu, Y., Simen, A., Duque, A., Vijayraghavan, S., Brennan, A., Dudley, A., Nou, E., Mazer, J. A., McCormick, D. A. & Arnsten, A. F. T. (2007) Alpha2A-adrenoceptor stimulation strengthens working memory networks by inhibiting cAMP–HCN channel signaling in prefrontal cortex. Cell 129:397410.Google Scholar
Wang, M., Yang, Y., Wang, C. J., Gamo, N. J., Jin, L. E., Mazer, J. A., Morrison, J. H., Wang, X. J. & Arnsten, A. F. (2013) NMDA receptors subserve working memory persistent neuronal firing in dorsolateral prefrontal cortex. Neuron 77(4):736–49.Google Scholar
Waterhouse, B. D., Moises, H. C. & Woodward, D. J. (1981) Alpha-receptor-mediated facilitation of somatosensory cortical neuronal responses to excitatory synaptic inputs and iontophoretically applied acetylcholine. Neuropharmacology 20:907–20.Google Scholar
Waterhouse, B. D., Mouradian, R., Sessler, F. M. & Lin, R. C. (2000) Differential modulatory effects of norepinephrine on synaptically driven responses of layer V barrel field cortical neurons. Brain Research 868:3947.Google Scholar