Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-17T21:18:16.643Z Has data issue: false hasContentIssue false

Dentate gyrus and hilar region revisited

Published online by Cambridge University Press:  05 January 2017

Conor Houghton*
Affiliation:
Department of Computer Science, University of Bristol, Bristol BS8 1UB, United [email protected]://www.cs.bris.ac.uk/home/cscjh/

Abstract

It is suggested that the dentate gyrus and hilar region in the hippocampus perform memory selection and that the selectivity of the gating of memory by this circuit is modulated by the norepinephrine–glutamate loop described by Mather et al.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altman, J. (1963) Autoradiographic investigation of cell proliferation in the brains of rats and cats. The Anatomical Record 145:573–91.CrossRefGoogle Scholar
Amaral, D. G. (1978) A Golgi study of cell types in the hilar region of the hippocampus in the rat. Journal of Comparative Neurology 182:851914.CrossRefGoogle ScholarPubMed
Amaral, D. G., Scharfman, H. E. & Lavenex, P. (2007) The dentate gyrus: Fundamental neuroanatomical organization (dentate gyrus for dummies). Progress in Brain Research 163:322.CrossRefGoogle ScholarPubMed
Amaral, D. G. & Witter, M. P. (1989) The three-dimensional organization of the hippocampal formation: A review of anatomical data. Neuroscience 31:571–91.CrossRefGoogle ScholarPubMed
Andrés, M. E., Bustos, G. & Gysling, K. (1993) Regulation of [3H]norepinephrine release by N-methyl-D-aspartate receptors in minislices from the dentate gyrus and the CA1–CA3 area of the rat hippocampus. Biochemical Pharmacology 46:1983–87.CrossRefGoogle ScholarPubMed
Bayer, S. A., Yackel, J. W. & Puri, P. S. (1982) Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science 216:890–92.CrossRefGoogle ScholarPubMed
Berridge, C. W. & Waterhouse, B. D. (2003) The locus coeruleus–noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews 42(1):3384. doi: 10.1016/s0165-0173(03)00143-7.CrossRefGoogle ScholarPubMed
Clelland, C. D., Choi, M., Romberg, C., Clemenson, G. D. Jr., Fragniere, A., Tyers, P., Jessberger, S., Saksida, L. M., Barker, R. A., Gage, F. H. & Bussey, T. J. (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325: 210–13.CrossRefGoogle ScholarPubMed
Dahl, D. & Winson, J. (1985) Action of norepinephrine in the dentate gyrus. I. Stimulation of locus coeruleus. Experimental Brain Research 59:491–96.CrossRefGoogle ScholarPubMed
Gardner-Medwin, A. (1976) The recall of events through the learning of associations between their parts. Proceedings of the Royal Society of London B 194:375402.Google ScholarPubMed
Gilbert, P. E., Kesner, R. P. & Lee, I. (2001) Dissociating hippocampal subregions: A double dissociation between dentate gyrus and CA1. Hippocampus 11:626–36.CrossRefGoogle ScholarPubMed
Harley, C. W. (2007) Norepinephrine and the dentate gyrus. Progress in Brain Research 163:299318.CrossRefGoogle ScholarPubMed
Hopfield, J. J. (1982) Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America 79:2554–58.CrossRefGoogle ScholarPubMed
Kitchigina, V., Vankov, A., Harley, C. & Sara, S. J. (1997) Novelty-elicited, noradrenaline-dependent enhancement of excitability in the dentate gyrus. European Journal of Neuroscience 9:4147.CrossRefGoogle ScholarPubMed
Koch, C. & Ullman, S. (1984) Selecting one among the many: A simple network implementing shifts in selective visual attention. MIT Artificial Intelligence Laboratory Technical Report Memo 770.Google Scholar
Koch, C. & Ullman, S. (1987) Shifts in selective visual attention: Towards the underlying neural circuitry. In: Matters of intelligence, ed. Vaina, L. M., pp. 115–41. Springer.CrossRefGoogle Scholar
Leutgeb, J. K., Leutgeb, S., Moser, M.-B. & Moser, E. I. (2007) Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315:961–66.CrossRefGoogle ScholarPubMed
Levy, W. B. & Steward, O. (1979) Synapses as associative memory elements in the hippocampal formation. Brain Research 175:233–45.CrossRefGoogle ScholarPubMed
Lynch, M. & Bliss, T. (1986) Noradrenaline modulates the release of [14C]glutamate from dentate but not from CA1/CA3 slices of rat hippocampus. Neuropharmacology 25:493–98.CrossRefGoogle Scholar
Marr, D. (1971) Simple memory: A theory for archicortex. Philosophical Transactions of the Royal Society B: Biological Sciences 262:2381.Google ScholarPubMed
McHugh, T. J., Jones, M. W., Quinn, J. J., Balthasar, N., Coppari, R., Elmquist, J. K., Lowell, B. B., Fanselow, M. S., Wilson, M. A. & Tonegawa, S. (2007) Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317:9499.CrossRefGoogle ScholarPubMed
McNaughton, B. L. & Morris, R. G. M. (1987) Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends in Neurosciences 10:408–15.CrossRefGoogle Scholar
Neuman, R. & Harley, C. (1983) Long-lasting potentiation of the dentate gyrus population spike by norepinephrine. Brain Research 273:162–65.CrossRefGoogle ScholarPubMed
Nitz, D. & McNaughton, B. (2004) Differential modulation of CA1 and dentate gyrus interneurons during exploration of novel environments. Journal of Neurophysiology 91:863–72.CrossRefGoogle ScholarPubMed
Olshausen, B. A., Anderson, C. H. & Van Essen, D. C. (1993) A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. The Journal of Neuroscience 13:4700–19.CrossRefGoogle ScholarPubMed
O'Reilly, R. C. & McClelland, J. L. (1994) Hippocampal conjunctive encoding, storage, and recall: Avoiding a trade-off. Hippocampus 4:661–82.CrossRefGoogle ScholarPubMed
Pittaluga, A. & Raiteri, M. (1990) Release-enhancing glycine-dependent presynaptic NMDA receptors exist on noradrenergic terminals of hippocampus. European Journal of Pharmacology 191(2):231–34.CrossRefGoogle ScholarPubMed
Raiteri, M., Garrone, B. & Pittaluga, A. (1992) N-Methyl-D-aspartic acid (NMDA) and non-NMDA receptors regulating hippocampal norepinephrine release. II. Evidence for functional cooperation and for coexistence on the same axon terminal. Journal of Pharmacology and Experimental Therapeutics 260:238–42.Google ScholarPubMed
Rolls, E. T. (1989) The representation and storage of information in neural networks in the primate cerebral cortex and hippocampus. In: The computing neuron, ed. Durbin, R., Miall, C. & Mitchison, G., pp. 125–59. Addison-Wesley.Google Scholar
Sahay, A., Scobie, K. N., Hill, A. S., O'Carroll, C. M., Kheirbek, M. A., Burghardt, N. S., Fenton, A. A., Dranovsky, A. & Hen, R. (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472 (7344):466–70.CrossRefGoogle ScholarPubMed
Scharfman, H. E. (1994) Evidence from simultaneous intracellular recordings in rat hippocampal slices that area CA3 pyramidal cells innervate dentate hilar mossy cells. Journal of Neurophysiology 72:2167–80.CrossRefGoogle ScholarPubMed
Scharfman, H. E. (1995) Electrophysiological evidence that dentate hilar mossy cells are excitatory and innervate both granule cells and interneurons. Journal of Neurophysiology 74:179–94.CrossRefGoogle ScholarPubMed
Scharfman, H. E. & Myers, C. E. (2012) Hilar mossy cells of the dentate gyrus: A historical perspective. Frontiers in Neural Circuits 6:106.Google ScholarPubMed
Treves, A. & Rolls, E. T. (1992) Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus 2:189–99.CrossRefGoogle Scholar