A substance carried convectively through the liver by the blood undergoes two successive enzymatic transformations. The resulting concentrations of the three forms of the substance are determined, as functions of position along the blood flow in the steady state, by coupled ordinary differential equations of the first order on a finite interval. The densities along the blood flow of the activities of the two (immobile) transforming enzymes are described by two non-negative and normalised functions of position.
The problem, suggested by recent experimental results, is to choose these two functions so as to minimise the concentration of the once-transformed (intermediate) form of the substance at one boundary (the liver outlet). That minimisation is particularly significant biologically when the intermediate form is toxic and the second transformation renders it harmless. In this problem of optimal control (exerted perhaps by natural selection), the classical approach through Euler's equations is inapplicable because of the constraints on the two density functions. Moreover, when the enzyme kinetics and hence the differential equations are non-linear, the functional to be minimised is not obtainable explicitly. Instead it appears, after some manipulation of the coupled equations, as the terminal boundary value of the solution of a non-linear Volterra integral equation, which involves the two density functions (one explicitly and one implicitly) as control variables.
Appropriate existence, uniqueness and boundedness results are obtained for the solution of this integral equation, and the problem is then solved rigorously for one class of non-linearities (including saturation kinetics). Some unanswered questions are posed for another class (including substrate-inhibition kinetics).