Published online by Cambridge University Press: 17 February 2009
A model is presented for describing the propagation of a one-dimensional wave of permanent form in a compressible gas in a pipe. Energy is lost to the system through the walls of the pipe, but the combustion wave produces heat through an exothermic chemical reaction. The full set of equations for the model is reduced to a phase-plane system, and it is shown that, for small amplitude waves, a weakly non-linear analysis leads to a temperature profile that is a classical solitary wave. A novel shooting method is developed for the full non-linear problem, and this confirms and extends the solitary-wave solution, up to a value of the temperature amplitude at which the wave begins to develop a shock. The jump conditions across the shock are presented, and numerical integration is used to continue the solution for temperature amplitudes at which a shock is present. An example is given of the extreme situation in which the shock is so strong that all the fuel behind the shock is exhausted.