We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Carbohydrate-rich diets may increase urinary excretion of chromium (Cr) and increase its requirements. This study was conducted to investigate the effect of grain type (barley v. corn) and Cr supplementation on feed intake, feeding behavior and weight gain in dairy calves. Forty-eight neonatal Holstein female calves were assigned randomly to four experimental diets in a 2×2 factorial arrangement. Experimental diets were either barley-based diet (BBD) or corn-based diet (CBD) supplemented with (+Cr) or without (−Cr) Cr as Cr-methionine (0.05 mg/kg of BW0.75). Chromium was provided in milk (from days 3 to 73 of life) during the pre-weaning period and then in pre-warmed water (from day 74 until day 94 of life) after weaning. Meal length tended to increase in calves fed the BBD v. CBD during the pre-weaning period. During the post-weaning period, meal size, inter-meal interval, and eating rate increased concurrently but meal frequency and eating time decreased in the BBD v. CBD. During the pre-weaning period, feed efficiency, BW at weaning, and heart girth increased and non-nutritive oral behaviors tended to decrease with Cr supplementation. Due to increased meal frequency, the starter feed intake but not eating time increased by Cr supplementation during the post-weaning period. Supplementing Cr increased starter feed intake, final BW, average daily gain and heart girth during the overall period. Rumination time increased in BBD+Cr calves due to increases in the frequency and duration of rumination, or decreased rumination bout interval. Overall, the type of grain had no effect on feed intake and growth performance; however, Cr supplementation decreased non-nutritive oral behaviors and increased starter feed intake via increasing the meal frequency and thereby improved growth performance.
In current feed evaluation systems, the nutritional value of protein sources in diets for pigs is based on the ileal digestibility of protein and amino acids, which does not account for the kinetics of protein digestion along the gastrointestinal tract. The objective of the present study was to determine the in vitro protein digestion kinetics of different protein sources (soya bean meal (SBM), wheat gluten (WG), rapeseed meal (RSM), whey powder (WP), dried porcine plasma protein, yellow meal worm larvae and black soldier fly larvae (BSF)). Protein sources were incubated with pepsin at pH 3.5 for 0 to 90 min and subsequently with pancreatin at pH 6.8 for 0 to 210 min at 39°C. The in vitro protein digestion kinetics were described as the kinetics of nitrogen (N) solubilisation and the release of low molecular weight peptides (LMW) (<500 Da). The N solubilisation rate ranged from 0.025 min−1 for BSF to 0.685 min−1 for WP during the incubation with pepsin, and from 0.027 min−1 for RSM to 0.343 min−1 for WP during the incubation with pancreatin. The release rate of LMW peptides ranged from 0.027 min−1 for WG to 0.093 min−1 for WP during the incubation with pepsin, and from 0.029 min−1 for SBM to 0.385 min−1 for WP. Black soldier fly larvae showed a similar release rate of LMW peptides as WP during the incubation with pancreatin. At the end of the sequential incubation with pepsin (90 min) and pancreatin (210 min), WG and WP showed the highest percentage of N present in LMW peptides relative to total N (78% and 79%, respectively), whereas SBM showed the lowest (35%). In conclusion, protein sources for pig diets show substantial differences in in vitro protein digestion kinetics as measured by the kinetics of N solubilisation and the release of LMW peptides. The rate of release of LMW peptides was not correlated to the rate of N solubilisation for each of the protein sources evaluated.
Limited research has suggested that higher lambing densities increase interference from foreign ewes at lambing which disrupts the ewe-lamb bond and compromises lamb survival. This may be particularly evident in mobs of twin-bearing ewes compared to single-bearing ewes because a greater number of lambs are born per day. Therefore, we hypothesised that; (i) decreasing the mob size of ewes at lambing has a greater impact on the survival of twin-born lambs than single-born lambs; (ii) the relationship between mob size and lamb survival can be explained by differences in the rate of interaction with foreign ewes and lambs at lambing; and (iii) ewes will utilise a limited area of the paddock at lambing and thus lambing density will be defined by the distribution of ewes in the paddock rather than the paddock area. Merino ewes were allocated into a 2×2 factorial combination of ewe pregnancy status (single- or twin-bearing) and mob size (high (n=130 ewes) or low (n=50 ewes)) on day 140 from the start of joining. Each treatment had two replicates excepting the low mob size for twins which had a third replicate. Ewes lambed at a stocking rate of 11 ewes/ha. Feed-on-offer during lambing exceeded 2400 kg dry matter (DM)/ha. Ewe-lamb behaviour was observed and dead lambs were autopsied over 11 days during the peak of lambing. The distribution of ewes in each paddock was recorded every 2 h during daylight hours by counting the number of ewes occupying 2500 m2 grids. The proportion of ewes and their newborn progeny which interacted with foreign ewes at lambing did not differ between the high and low mob sizes for single- (24.9% v. 20.8%) or twin-bearing ewes (14.3% v. 19.6%; P=0.74). Similarly, interaction with foreign lambs did not differ between the high and low mob sizes for single- (14.5% v. 25.2%) and twin-bearing ewes (34.5% v. 26.4%; P=0.44). The distribution of ewes within the paddock did not differ between treatments (P=0.95). On average, single-bearing ewes which lambed at the high and low mob sizes occupied 34% and 36% of the paddock during daylight hours, and the corresponding values for twin-bearing ewes were 40% and 43%. Survival of twin-born lambs was lower than single-born lambs (75.3% v. 87.9%; P<0.01), however, lamb survival was not influenced by mob size regardless of birth type. These results suggest that higher mob sizes may not compromise lamb survival when feed-on-offer during lambing exceeds 2400 kg DM/ha.
Some routine handling procedures can produce stress in farm animals, and an adequate control of these stressors is important to avoid the negative effects on animal health and production. The measurement of biomarkers in saliva can be a suitable tool for the evaluation and control of stress. In this report, lipase, butyrylcholinesterase (BChE), total esterase (TEA) and adenosine deaminase (ADA) activities in the saliva of sheep were evaluated as biomarkers of stress. For this purpose, they were measured after inducing stress by facing a dog (experiment 1) and shearing (experiment 2), and comparing them to other stress salivary biomarkers such as α-amylase (sAA) and cortisol, as well as heart rate (HR). Each analyte was measured at the basal time, and during and just after the end of the stressful stimulus, and at various times for the first hour after the period of stress induction. Values were compared with those obtained from a control group. Lipase was the only analyte that showed significant changes between the stress and the control group in both experiments. Although TEA and ADA increased after stress, no significant differences were seen compared with the control group. Lipase was correlated highly with sAA and HR, in experiment 1; and correlated moderately with cortisol and HR in experiment 2. Lipase showed the greatest percentage increase after the stressful stimuli and less overlap with the control group in the two experiments. From the results of this study it can be concluded that lipase, TEA, BChE and ADA are enzymes present in the saliva of sheep and that they can be measured by using simple and fast colorimetric methods. Further studies should be undertaken with regard to the possible application of lipase as a biomarker of stress in sheep.
Excitable temperament disrupts physiological events required for reproductive development in cattle, but no research has investigated the impacts of temperament on growth and puberty attainment in Bos indicus females. Hence, this experiment evaluated the effects of temperament on growth, plasma cortisol concentrations and puberty attainment in B. indicus heifers. A total of 170 Nelore heifers, weaned 4 months before the beginning of this experiment (days 0 to 91), were managed in two groups of 82 and 88 heifers each (mean ± SE; initial BW=238±2 kg, initial age=369±1 days across groups). Heifer temperament was evaluated via exit velocity on day 0. Individual exit score was calculated within each group by dividing exit velocity into quintiles and assigning heifers with a score from 1 to 5 (1=slowest; 5=fastest heifer). Heifers were classified according to exit score as adequate (ADQ, n=96; exit score⩽3) or excitable temperament (EXC, n=74; exit score>3). Heifer BW, body condition score (BCS) and blood samples were obtained on days 0, 31, 60 and 91. Heifer exit velocity and score were recorded again on days 31, 60 and 91. Ovarian transrectal ultrasonography was performed on days 0 and 10, 31 and 41, 60 and 70, 81 and 91 for puberty evaluation. Heifer was declared pubertal at the first 10-day interval in which a corpus luteum was detected. Exit velocity and exit score obtained on day 0 were correlated (r⩾0.64, P<0.01) with evaluations on days 31, 60 and 91. During the experiment, ADQ had greater (P<0.01) mean BCS and BW gain, and less (P<0.01) mean plasma cortisol concentration compared with EXC heifers. Temperament × time interactions were detected (P<0.01) for exit velocity and exit score, which were always greater (P<0.01) in EXC v. ADQ heifers. A temperament × time interaction was also detected (P=0.03) for puberty attainment, which was delayed in EXC v. ADQ heifers. At the end of the experiment, a greater (P<0.01) proportion of ADQ were pubertal compared with EXC heifers. In summary, B. indicus heifers classified as EXC had reduced growth, increased plasma cortisol concentrations and hindered puberty attainment compared to ADQ heifers. Moreover, exit velocity may serve as temperament selection criteria to optimize development of B. indicus replacement heifers.
Multiple trait selection indexes in pig breeding programmes should take into account the population structure and time delay between parent selection and expressions of traits in all production levels next to the trait impacts on economic efficiency of production systems. Gene flow procedures could be used for the correct evaluation of maternal and direct traits of pig breeds involved in breeding or crossbreeding systems. Therefore, the aim of this study was to expand a previously developed bioeconomic model and computer program to calculate the marginal economic values by including a gene flow procedure to calculate the economic weights for maternal and direct traits in pig breeds. The new program was then applied to the three-way crossbreeding system of the Czech National Programme for Pig Breeding. Using this program, the marginal economic values of traits for dam breeds Czech Large White in the dam position and Czech Landrace in the sire position, and for the sire breed Pietrain were weighted by the number of discounted gene expressions of selected parents of each breed summarised within all links of the crossbreeding system during the 8-year investment period. Economic weights calculated in this way were compared with the approximate economic weights calculated previously without a gene flow procedure. Taking into account the time delay between parent selection and trait expression (using discounting with half-year discount rates of 2% or 5%) and including more than one generation of parent progeny had little impact on the relative economic importance of maternal and direct traits of breeds involved in the evaluated three-way crossbreeding system. These results indicated that this gene-flow method could be foregone when estimating the relative economic weights of traits in pig crossbreeding systems applying artificial insemination at all production levels.
There have been few studies realized that evaluate the effects of adopting
different nutritional systems in more than one phase of cattle production on
carcass and meat characteristics. This study was realized to evaluate carcass
and meat characteristics from bulls submitted to different nutritional systems
during two production phases. The experiment was conducted at
Figueira’s farm during two production phases: I (cow–calf)
– 80 calves (99.6±2.72 days of age and
109.7±2.99 kg of BW) with their mothers were randomly assigned into
two supplemental diets: cow–calf mineral supplement
(n=40) or cow–calf creep-feeding
(n=40); II (stocker) – the same 80
calves (201.2±2.11 days of age and 190.2±3.37 kg of BW)
were redistributed into two production systems: stocker pasture
(n=40) or stocker feedlot (SF;
n=40). After, all 80 animals were kept on a pasture
system (III) for 290 days, and then finished in a feedlot system (IV) for more
33 days. Then, they were slaughtered at an average 764.2±3.06 days of
age and at 499.2±3.33 kg of final BW. After slaughter, the average
daily gain was calculated, and the carcass and meat characteristics were
measured. The statistical model design used was completely randomized in a
2×2 factorial arrangement (two treatment groups on
cow–calf phase and two treatment groups on stocker phase). The single
effects between the groups in each phase and the interactions between both
phases (cow–calf v. stocker) were analyzed. The
results were compared by Fisher’s test, using the R statistical
software. A cow–calf by stocker phases interaction occurred for
carcass conformation and fiber diameter. For single effects, the greatest
influences observed were in the stocker phase. The feedlot group was slaughtered
17 days earlier, with greater final BW (3.8%), hot carcass weight
(5.7%), average daily gain (6.9%), dressing percentage
(1.8%), carcass length (1.8%), carcass width
(1.5%), longissimus muscle area (4.8%)
and muscle depth (2.3%) than pasture group. The SF group also had
influence on fat color; showing higher L* and lower
b* values. These results reveal that bulls
reared in feedlot at the stocker phase have higher muscle development and that
the stocker phase has the greatest potential to influence carcass
characteristics and meat quality.
In intensive feeding systems, competition may be high and social dominance may affect animal performance by changing dry matter intake (DMI) and behavioral time budgets. If competition level is maintain over time, the strategies developed by heifers of different social status are expected to differ. Thus, the aim of this study was to compare individual DMI, intake rate and eating, ruminating, lying and standing behaviors in dominant (DOM) and subordinate (SUB) pre-pubertal dairy heifers in a model study implying continuous competitive situations. A total of 16 Holstein and Jersey×Holstein pre-pubertal heifers (251±10 days old, weighing 208±14 kg; mean±SEM) were allocated into eight homogeneous dyads. Each dyad was maintained during 120 days (day 0=beginning of measurements) in pens, and received a total mixed ration from one feeder/dyad. The DOM and SUB heifers was determined (day 0, twice during the first month of the experiment and every month afterwards) by observation of the winner in agonistic interactions in each dyad after the feed was supplied. The general activity pattern (eating, ruminating, lying and standing) of each heifer was recorded by direct instantaneous scan-sampling, every 10 min for 12 h, in 7 days (days 1, 21, 35, 60, 75, 100 and 120). Individual DMI was estimated with the double marker technique, in three intervals (I=days 17-26; II=days 78-87 and III=days 112-120), while estimated intake rate (kg/min) was calculated for each interval as the DMI per total eating time. After the experiment was concluded, data of the first 5 and the last 6 h of the 12 h scan-sampling (related to the moment the feed was supplied) was grouped according to the moments of greater and lesser competition for feed on each day. During the first 5 h, where competition was expected to be highest, no differences in eating behavior were found between heifers of different social status, but DOM heifers spent more time ruminating and lying than SUB heifers, while SUB spent more time standing than DOM heifers. No differences were found on DMI between DOM and SUB, but SUB ate at a faster rate on interval II compared with DOM heifers. In conclusion, in this model study of heifer dyads, SUB heifers had greater intake rate with no differences in feed intake, spent less time ruminating and lying, and more time standing than DOM heifers during the first hours after feed delivery.
The effect of reduced balanced protein (RP) diet in the F0 and F1 generation of broiler breeders on the learning ability and memory retention of the F2 generation was investigated by means of a reward v. no reward discrimination T-maze test. There were two treatments for the F0 generation: control (C) group, reared on standard commercial diets, and reduced balanced protein (RP) group, fed with RP diets (25% reduction in CP and amino acids). The female F0-progeny of each treatment was again separated into the two dietary treatments, resulting in four treatments for the F1 generation: C/C, C/RP, RP/C and RP/RP (breeder feed in F0/F1 generation). The RP diets fed breeders received on average 10% more feed than C diets fed breeders to achieve a similar target BW. The F2 generation was composed of four treatments coming from the female F1-progeny of the four treatments and were all fed with C diet (namely C/C/C, C/RP/C, RP/C/C and RP/RP/C). All four F2 generation groups were able to complete the T-maze learning test with a slight difference in success rate but a significant difference within groups was observed regarding the time needed to complete the test. In general, the RP/RP/C group needed more time for completing the test compared with the other three groups and the shortest time was recorded for the RP/C/C group. At similar ages, breeders with early learning experience spent significantly less time in completing the test compared with unexperienced breeders. Long-term memory retention was observed in all four groups whereas the learning ability in solving the test decreased with age. It took longer for the breeders to complete the test at older ages. In conclusion, under our experimental conditions, the RP dietary treatment in previous generations had no influence on the T-maze learning ability and memory retention of broiler breeders of the third generation, although it might have effects on the working performance in the T-maze learning test of F2 generation breeders.
Multi-sire mating of a mob of ewes is commonly used in commercial sheep production systems. However, ram mating success (defined as the number of lambs sired by an individual) can vary between rams in the mating group. If this trait was repeatable and heritable, selection of rams capable of siring larger numbers of lambs could reduce the number of rams required for mating and ultimately lead to increased genetic gain. However, genetic correlations with other productive traits, such as growth and female fertility, could influence the potential for ram mating success to be used as a selection trait. In order to investigate this trait, parentage records (including accuracy of sire assignment) from 15 commercial ram breeding flocks of various breeds were utilised to examine the repeatability and heritability of ram mating success in multi-sire mating groups. In addition, genetic and phenotypic correlations with growth and female fertility traits were estimated using ASReml. The final model used for the ram mating success traits included age of the ram and mating group as fixed effects. Older rams (3+years old) had 15% to 20% greater mating success than younger rams (1 or 2 years of age). Increasing the stringency of the criteria for inclusion of both an individual lamb, based on accuracy of sire assignment, or a whole mating group, based on how many lambs had an assigned sire, increased repeatability and heritability estimates of the ram mating success traits examined. With the most stringent criteria employed, where assignment of sire accuracy was >0.95 and the total number of lambs in the progeny group that failed to have a sire assigned was<0.05, repeatability and heritability for loge(number of lambs) was 0.40±0.09 and 0.26±0.12, respectively. For proportion of lambs sired, repeatability and heritability were both 0.30±0.09. The two ram mating traits (loge(nlamb) and proportion) were highly correlated, both phenotypically and genetically (0.88±0.01 and 0.94±0.06, respectively). Both phenotypic and genetic correlations between ram mating success and growth and other female fertility traits were low and non-significant. In conclusion, there is scope to select rams capable of producing high numbers of progeny and thus increase selection pressure on rams to increase genetic gain.
Precision technologies and data have had relatively modest impacts in grass-based livestock ruminant production systems compared with other agricultural sectors such as arable. Precision technologies promise increased efficiency, reduced environmental impact, improved animal health, welfare and product quality. The benefits of precision technologies have, however, been relatively slow to be realised on pasture based farms. Though there is significant overlap with indoor systems, implementing technology in grass-based dairying brings unique opportunities and challenges. The large areas animals roam and graze in pasture based systems and the associated connectivity challenges may, in part at least, explain the comparatively lower adoption of such technologies in pasture based systems. With the exception of sensor and Bluetooth-enabled plate metres, there are thus few technologies designed specifically to increase pasture utilisation. Terrestrial and satellite-based spectral analysis of pasture biomass and quality is still in the development phase. One of the key drivers of efficiency in pasture based systems has thus only been marginally impacted by precision technologies. In contrast, technological development in the area of fertility and heat detection has been significant and offers significant potential value to dairy farmers, including those in pasture based systems. A past review of sensors in health management for dairy farms concluded that although the collection of accurate data was generally achieved, the processing, integration and presentation of the resulting information and decision-support applications were inadequate. These technologies’ value to farming systems is thus unclear. As a result, it is not certain that farm management is being sufficiently improved to justify widespread adoption of precision technologies currently. We argue for a user need-driven development of technologies and for a focus on how outputs arising from precision technologies and associated decision support applications are delivered to users to maximise their value. Further cost/benefit analysis is required to determine the efficacy of investing in specific precision technologies, potentially taking account of several yet to ascertained farm specific variables.
There is community concern about the treatment of farm animals post-farm gate, particularly animal transport and slaughter. Relationships between lamb behavioural and physiological variables on farm, stockperson, dog and lamb behavioural variables pre-slaughter and plasma cortisol, glucose and lactate in lambs post-slaughter were studied in 400 lambs. The lambs were observed in three behavioural tests, novel arena, flight distance to a human and temperament tests, before transport for slaughter. Closed-circuit television video footage was used to record stockperson, dog and lamb behaviour immediately before slaughter. Blood samples for cortisol, glucose and lactate analyses were collected on farm following the three behavioural tests and immediately post-slaughter. The regression models that best predicted plasma cortisol, glucose and lactate concentrations post-slaughter included a mixture of stockperson and dog behavioural variables as well as lamb variables both on-farm and pre-slaughter. These regression models accounted for 33%, 34% and 44% of the variance in plasma cortisol, glucose and lactate concentrations post-slaughter, respectively. Some of the stockperson and dog behaviours pre-slaughter that were predictive of the stress and metabolic variables post-slaughter included the duration of negative stockperson behaviours such as fast locomotion and lifting/pulling lambs, and the duration of dog behaviours such as lunging and barking at the lamb, while some of the predictive lamb behaviour variables included the durations of jumping and fleeing. Some of the physiological and behavioural responses to the behavioural tests on farm were also predictive of the stress and metabolic variables post-slaughter. These relationships support the well-demonstrated effect of handling on fear and stress responses in livestock, and although not direct evidence of causal relationships, highlight the potential benefits of training stockpeople to reduce fear and stress in sheep at abattoirs.
The transition period is the most critical period in the lactation cycle of dairy cows. Extended lactations reduce the frequency of transition periods, the number of calves and the related labour for farmers. This study aimed to assess the impact of 2 and 4 months extended lactations on milk yield and net partial cash flow (NPCF) at herd level, and on greenhouse gas (GHG) emissions per unit of fat- and protein-corrected milk (FPCM), using a stochastic simulation model. The model simulated individual lactations for 100 herds of 100 cows with a baseline lactation length (BL), and for 100 herds with lactations extended by 2 or 4 months for all cows (All+2 and All+4), or for heifers only (H+2 and H+4). Baseline lactation length herds produced 887 t (SD: 13) milk/year. The NPCF, based on revenues for milk, surplus calves and culled cows, and costs for feed, artificial insemination, calving management and rearing of youngstock, was k€174 (SD: 4)/BL herd per year. Extended lactations reduced milk yield of the herd by 4.1% for All+2, 6.9% for All+4, 1.1% for H+2 and 2.2% for H+4, and reduced the NPCF per herd per year by k€7 for All+2, k€12 for All+4, k€2 for H+2 and k€4 for H+4 compared with BL herds. Extended lactations increased GHG emissions in CO2-equivalents per t FPCM by 1.0% for All+2, by 1.7% for All+4, by 0.2% for H+2 and by 0.4% for H+4, but this could be compensated by an increase in lifespan of dairy cows. Subsequently, production level and lactation persistency were increased to assess the importance of these aspects for the impact of extended lactations. The increase in production level and lactation persistency increased milk production of BL herds by 30%. Moreover, reductions in milk yield for All+2 and All+4 compared with BL herds were only 0.7% and 1.1% per year, and milk yield in H+2 and H+4 herds was similar to BL herds. The resulting NPCF was equal to BL for All+2 and All+4 and increased by k€1 for H+2 and H+4 due to lower costs for insemination and calving management. Moreover, GHG emissions per t FPCM were equal to BL herds or reduced (0% to −0.3%) when lactations were extended. We concluded that, depending on lactation persistency, extending lactations of dairy cows can have a positive or negative impact on the NPCF and GHG emissions of milk production.
Optimal type and dietary inclusion rates of cereal grains for periparturient sheep are unknown. The objective was to determine effects of feeding diets with high (H) v. low (L) levels of ground corn grain (CN) v. combined ground wheat and barley grains (WB) on intake, rumen fermentation, colostrum and milk properties, and blood metabolites of periparturient sheep. Twenty Afshari×Merino ewes were used in a completely randomized design study from 24 days prepartum through 21 days postpartum. Ewes were kept indoors in individual boxes and received once daily at 0900 h total mixed rations. Treatments were mixed rations containing either (1) H or (2) L concentrate based on either (1) 100% CN or (2) 50 : 50 ratio of ground wheat : ground barley grains in a 2×2 factorial arrangement. Each treatment group had five ewes including two twin-lamb ewes and three single-lamb ewes. Postpartal dry matter intake (DMI) increased by feeding high CN v. high and low WB, while high v. low CN improved postpartum DMI. The DMI during lambing tended to increase with the high v. low WB. Feeding CN v. WB, and feeding both CN and WB at L v. H level increased fecal pH. Postpartal rumen pH was lower with the high v. low WB (5.7 v. 6.2). Rumen concentrations of propionate were lower and of acetate were higher with L v. H grain levels. Increased dietary grain reduced urine pH for WB (7.24 v. 7.83) but not for CN (7.63 v. 7.52) prepartum. Colostrum properties, postpartal urine pH, lamb weight at birth and 21 days of age, and placental weight and expulsion time were unaffected. Milk yield increased and milk fat yield tended to increase by H v. L grain diets. Plasma glucose was increased by feeding high v. low WB, whereas CN v. WB tended to reduce peripartal plasma non-esterified fatty acids (NEFA) and increased insulin to NEFA ratio. In conclusion, more cereal grains can be included in periparturient sheep diets and CN instead of WB may be fed to periparturient sheep to improve energy status. Findings suggest opportunities to optimize periparturient ewe physiology and performance through feeding certain cereals and avoiding high levels of WB.
New strategies must be developed to improve poultry performance and health. One of these strategies is the use of supplementations as sodium butyrate (SB) to improve the physiological status and then increasing the growth performance, but the best period of age in which the addition of SB is more effective on birds is not well understood. Therefore, the aim of this study was to investigate the effect of dietary inclusion of SB supplementation through the first, second or whole growth period on some physiological indices and growth performance of growing Japanese quail. In total, 240 unsexed 1-day-old quail chicks were divided into four groups (three replicates per group of 20 chicks in each). The first group was fed basal diet without SB from 1 to 42 days (control, T1), while SB at a rate of 1 g/kg basal diet was mixed with the feed of the 2nd, 3rd and 4th groups of chicks from 1 to 21 days (SB 1 to 21, T2), 1 to 42 days (SB 1 to 42, T3) and 22 to 42 days (SB 22 to 42, T4) of age, respectively. The results stated that addition of SB significantly improved live BW at 21 days, feed conversion ratio (FCR) and BW gain (BWG) during 1 to 21 days in T2 and T3 groups compared to T1 and T4 groups. During the whole period, group T3 had higher BWG and better FCR than the other groups (T1, T2 and T4). At 21 days, no significant differences among all treatments were detected on haematology and serum biochemistry except total protein and cholesterol. At 42 days, SB supplementation significantly improved most serum constituents, haematological parameters, villus height and width of intestine and morphometry of immune organs. The group fed SB throughout the experiment (T3) showed the best results. In conclusion, it is recommended feeding quail on diets containing SB through the whole growth period to show its affirmative impact on the growth and physiological indices.
Livestock is a major driver in most rural landscapes and economics, but it also polarises debate over its environmental impacts, animal welfare and human health. Conversely, the various services that livestock farming systems provide to society are often overlooked and have rarely been quantified. The aim of analysing bundles of services is to chart the coexistence and interactions between the various services and impacts provided by livestock farming, and to identify sets of ecosystem services (ES) that appear together repeatedly across sites and through time. We review three types of approaches that analyse associations among impacts and services from local to global scales: (i) detecting ES associations at system or landscape scale, (ii) identifying and mapping bundles of ES and impacts and (iii) exploring potential drivers using prospective scenarios. At a local scale, farming practices interact with landscape heterogeneity in a multi-scale process to shape grassland biodiversity and ES. Production and various ES provided by grasslands to farmers, such as soil fertility, biological regulations and erosion control, benefit to some extent from the functional diversity of grassland species, and length of pasture phase in the crop rotation. Mapping ES from the landscape up to the EU-wide scale reveals a frequent trade-off between livestock production on one side and regulating and cultural services on the other. Maps allow the identification of target areas with higher ecological value or greater sensitivity to risks. Using two key factors (livestock density and the proportion of permanent grassland within utilised agricultural area), we identified six types of European livestock production areas characterised by contrasted bundles of services and impacts. Livestock management also appeared to be a key driver of bundles of services in prospective scenarios. These scenarios simulate a breakaway from current production, legislation (e.g. the use of food waste to fatten pigs) and consumption trends (e.g. halving animal protein consumption across Europe). Overall, strategies that combine a reduction of inputs, of the use of crops from arable land to feed livestock, of food waste and of meat consumption deliver a more sustainable food future. Livestock as part of this sustainable future requires further enhancement, quantification and communication of the services provided by livestock farming to society, which calls for the following: (i) a better targeting of public support, (ii) more precise quantification of bundles of services and (iii) better information to consumers and assessment of their willingness to pay for these services.
Lowering protein level in diets for piglets urge to have knowledge on the piglet’s requirements for essential amino acids (AA) and their interactions. The present studies aimed to determine the interaction between the dietary level of valine (Val) and tryptophan (Trp) and the effect of AA imbalance at two levels of dietary Val on the growth performance of post-weaning piglets. In Experiment 1 (duration 4 weeks), the effects of supplementation of free l-Val (1.0 g/kg) and/or l-Trp (0.5 g/kg) in a low-CP diet (CP 17.7%), marginal in Trp and Val, was studied in a 2×2 factorial design and using an additional reference treatment (CP 19.5%). In Experiment 2 (duration 5 weeks), the influence of a stepwise increase in excess supply of isoleucine (Ile), histidine (His) and leucine (Leu), up to 10, 10% and 30% relative to their requirement values respectively, was evaluated at 60% or 70% standardized ileal digestible (SID) Val relative to SID lysine, using a 3×2 factorial design. In Experiment 1, over the whole experimental period, feed intake (FI) was affected by dietary Trp level (P<0.05) and feed conversion ratio (FCR) by both the level of Trp and Val in the diet (both P<0.05). Increasing Trp level increased FI and decreased FCR while increasing dietary Val level reduced FI and increased FCR. For BW gain (BWG), there was an interaction between dietary level of Trp and Val (P<0.05). Valine supplementation decreased BWG using a diet marginal in Trp, whereas it increased BWG when using a Trp sufficient diet. Piglets fed the low-CP diet with adequate levels of Val and Trp showed at least same performance compared to piglets fed the high CP reference diet. In Experiment 2, increasing dietary Val improved FI and BWG (P<0.001) and tended to improve FCR. Dietary AA excess for Ile, His and Leu reduced FI and BWG (P<0.05) and only affected FCR (P<0.01) in the 1st week of the study. Dietary level of Val and AA excess did not show interactive effects, except for FCR over the final 2 weeks of the study (P<0.05). In conclusion, an interaction exists between dietary supply of Val and Trp on the zootechnical performance of post-weaning piglets and dietary AA excess for Ile, Leu and His, reduces growth performance of piglets in low-protein diets, independent of the dietary level of Val.
Large efforts have been deployed in developing methods to estimate methane emissions from cattle. For large scale applications, accurate and inexpensive methane predictors are required. Within a livestock precision farming context, the objective of this work was to integrate real-time data on animal feeding behaviour with an in silico model for predicting the individual dynamic pattern of methane emission in cattle. The integration of real-time data with a mathematical model to predict variables that are not directly measured constitutes a software sensor. We developed a dynamic parsimonious grey-box model that uses as predictor variables either dry matter intake (DMI) or the intake time (IT). The model is described by ordinary differential equations.
Model building was supported by experimental data of methane emissions from respiration chambers. The data set comes from a study with finishing beef steers (cross-bred Charolais and purebred Luing finishing). Dry matter intake and IT were recorded using feed bins. For research purposes, in this work, our software sensor operated off-line. That is, the predictor variables (DMI, IT) were extracted from the recorded data (rather than from an on-line sensor). A total of 37 individual dynamic patterns of methane production were analyzed. Model performance was assessed by concordance analysis between the predicted methane output and the methane measured in respiration chambers. The model predictors DMI and IT performed similarly with a Lin’s concordance correlation coefficient (CCC) of 0.78 on average. When predicting the daily methane production, the CCC was 0.99 for both DMI and IT predictors. Consequently, on the basis of concordance analysis, our model performs very well compared with reported literature results for methane proxies and predictive models. As IT measurements are easier to obtain than DMI measurements, this study suggests that a software sensor that integrates our in silico model with a real-time sensor providing accurate IT measurements is a viable solution for predicting methane output in a large scale context.