We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This book presents a comprehensive account of molecular quantum electrodynamics from the perspectives of physics and theoretical chemistry. The first part of the book establishes the essential concepts underlying classical electrodynamics, using the tools of Lagrangian and Hamiltonian mechanics. The second part focuses on the fundamentals of quantum mechanics, particularly how they relate to, and influence, chemical and molecular processes. The special case of the Coulomb Hamiltonian (including the celebrated Born-Oppenheimer approximation) is given a modern treatment. The final part of the book is devoted to non-relativistic quantum electrodynamics and describes in detail its impact upon our understanding of atoms and molecules, and their interaction with light. Particular attention is paid to the Power-Zienau-Woolley (PZW) representations, and both perturbative and non-perturbative approaches to QED calculation are discussed. This book is ideal for graduate students and researchers in chemical and molecular physics, quantum chemistry, and theoretical chemistry.
Lasers are created to study the timescale of electron motion in atoms and molecules. They also have wide applications in areas like solid state, plasma physics, nanoscience and defence technology. This book helps readers to master the large variety of physical phenomena and technological aspects involved in laser technology. Besides explaining the physical principles and common techniques of laser science and technology, it also elaborates on topics like High-harmonic Generation (HHG) and strong-field Non-sequential Double Ionization (NSDI), effects of a low energy atto-second pulse, laser spectroscopy, laser cooling and trapping, quantum optics and laser applications. Many important concepts covered include a new test system design of comprehensive characterization of non-imaging laser IR guided missiles, advanced laser and opto-electronics technologies for Low Intensity Conflict (LIC) applications and development of highly advanced laser cavity and resonator for high power chemical oxygen iodine laser at the Laser Science and Technology Centre (LASTEC).