We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The latest generation of radio surveys are now producing sky survey images containing many millions of radio sources. In this context it is highly desirable to understand the performance of radio image source finder (SF) software and to identify an approach that optimises source detection capabilities. We have created Hydra to be an extensible multi-SF and cataloguing tool that can be used to compare and evaluate different SFs. Hydra, which currently includes the SFs Aegean, Caesar, ProFound, PyBDSF, and Selavy, provides for the addition of new SFs through containerisation and configuration files. The SF input RMS noise and island parameters are optimised to a 90% ‘percentage real detections’ threshold (calculated from the difference between detections in the real and inverted images), to enable comparison between SFs. Hydra provides completeness and reliability diagnostics through observed-deep ($\mathcal{D}$) and generated-shallow ($\mathcal{S}$) images, as well as other statistics. In addition, it has a visual inspection tool for comparing residual images through various selection filters, such as S/N bins in completeness or reliability. The tool allows the user to easily compare and evaluate different SFs in order to choose their desired SF, or a combination thereof. This paper is part one of a two part series. In this paper we introduce the Hydra software suite and validate its $\mathcal{D/S}$ metrics using simulated data. The companion paper demonstrates the utility of Hydra by comparing the performance of SFs using both simulated and real images.
The report of a detection of an absorption profile centred at 78 MHz in the continuum radio background spectrum by the EDGES experiment and its interpretation as the redshifted 21 cm signal of cosmological origin has become one of the most debated results of observational cosmology in recent times. The cosmological 21 cm has long been proposed to be a powerful probe for observing the early Universe and tracing its evolution over cosmic time. Even though the science case is well established, measurement challenges posed on the technical ground are not fully understood to the level of claiming a successful detection. EDGES’s detection has naturally motivated a number of experimental attempts worldwide to corroborate the findings. In this paper, we present a precision cross-correlation spectrometer HYPEREION purpose-designed for a precision radio background measurement between 50–120 MHz to detect the absorption profile reported by the EDGES experiment. HYPEREION implements a pre-correlation signal processing technique that self-calibrates any spurious additive contamination from within the system and delivers a differential measurement of the sky spectrum and a reference thermal load internal to the system. This ensures an unambiguous ‘zero-point’ of absolute calibration of the purported absorption profile. We present the system design, measurement equations of the ideal system, systematic effects in the real system, and finally, an assessment of the real system output for the detection of the absorption profile at 78 MHz in the continuum radio background spectrum.
We present a systematic search for radio counterparts of novae using the Australian Square Kilometer Array Pathfinder (ASKAP). Our search used the Rapid ASKAP Continuum Survey, which covered the entire sky south of declination $+41^{\circ}$ ($\sim$$34000$ square degrees) at a central frequency of 887.5 MHz, the Variables and Slow Transients Pilot Survey, which covered $\sim$$5000$ square degrees per epoch (887.5 MHz), and other ASKAP pilot surveys, which covered $\sim$200–2000 square degrees with 2–12 h integration times. We crossmatched radio sources found in these surveys over a two–year period, from 2019 April to 2021 August, with 440 previously identified optical novae, and found radio counterparts for four novae: V5668 Sgr, V1369 Cen, YZ Ret, and RR Tel. Follow-up observations with the Australian Telescope Compact Array confirm the ejecta thinning across all observed bands with spectral analysis indicative of synchrotron emission in V1369 Cen and YZ Ret. Our light-curve fit with the Hubble Flow model yields a value of $1.65\pm 0.17 \times 10^{-4} \rm \:M_\odot$ for the mass ejected in V1369 Cen. We also derive a peak surface brightness temperature of $250\pm80$ K for YZ Ret. Using Hubble Flow model simulated radio lightcurves for novae, we demonstrate that with a 5$\sigma$ sensitivity limit of 1.5 mJy in 15-min survey observations, we can detect radio emission up to a distance of 4 kpc if ejecta mass is in the range $10^{-3}\rm \:M_\odot$, and upto 1 kpc if ejecta mass is in the range $10^{-5}$–$10^{-3}\rm \:M_\odot$. Our study highlights ASKAP’s ability to contribute to future radio observations for novae within a distance of 1 kpc hosted on white dwarfs with masses $0.4$–$1.25\:\rm M_\odot$, and within a distance of 4 kpc hosted on white dwarfs with masses $0.4$–$1.0\:\rm M_\odot$.
General relativity is a subject that most undergraduates in physics are particularly curious about, but it has a reputation for being very difficult. This book provides as gentle an introduction to general relativity as possible, leading you through the necessary mathematics in order to arrive at important results. Of course, you cannot avoid the mathematics of general relativity altogether, but, using this book, you can gain an appreciation of tensors and differential geometry at a pace you can keep up with. Early chapters build up to a complete derivation of Einstein's Equations, while the final chapters cover the key applications on black holes, cosmology and gravitational waves. It is designed as a coursebook with just enough material to cover in a one-semester undergraduate class, but it is also accessible to any numerate readers who wish to appreciate the power and beauty of Einstein's creation for themselves.
The quenching of cluster satellite galaxies is inextricably linked to the suppression of their cold interstellar medium (ISM) by environmental mechanisms. While the removal of neutral atomic hydrogen (H i) at large radii is well studied, how the environment impacts the remaining gas in the centres of galaxies, which are dominated by molecular gas, is less clear. Using new observations from the Virgo Environment traced in CO survey (VERTICO) and archival H i data, we study the H i and molecular gas within the optical discs of Virgo cluster galaxies on 1.2-kpc scales with spatially resolved scaling relations between stellar ($\Sigma_{\star}$), H i ($\Sigma_{\text{H}\,{\small\text{I}}}$), and molecular gas ($\Sigma_{\text{mol}}$) surface densities. Adopting H i deficiency as a measure of environmental impact, we find evidence that, in addition to removing the H i at large radii, the cluster processes also lower the average $\Sigma_{\text{H}\,{\small\text{I}}}$ of the remaining gas even in the central $1.2\,$kpc. The impact on molecular gas is comparatively weaker than on the H i, and we show that the lower $\Sigma_{\text{mol}}$ gas is removed first. In the most H i-deficient galaxies, however, we find evidence that environmental processes reduce the typical $\Sigma_{\text{mol}}$ of the remaining gas by nearly a factor of 3. We find no evidence for environment-driven elevation of $\Sigma_{\text{H}\,{\small\text{I}}}$ or $\Sigma_{\text{mol}}$ in H i-deficient galaxies. Using the ratio of $\Sigma_{\text{mol}}$-to-$\Sigma_{\text{H}\,{\small\text{I}}}$ in individual regions, we show that changes in the ISM physical conditions, estimated using the total gas surface density and midplane hydrostatic pressure, cannot explain the observed reduction in molecular gas content. Instead, we suggest that direct stripping of the molecular gas is required to explain our results.
We describe the design, validation, and commissioning of a new correlator termed ‘MWAX’ for the Murchison Widefield Array (MWA) low-frequency radio telescope. MWAX replaces an earlier generation MWA correlator, extending correlation capabilities and providing greater flexibility, scalability, and maintainability. MWAX is designed to exploit current and future Phase II/III upgrades to MWA infrastructure, most notably the simultaneous correlation of all 256 of the MWA’s antenna tiles (and potentially more in future). MWAX is a fully software-programmable correlator based around an ethernet multicast architecture. At its core is a cluster of 24 high-performance GPU-enabled commercial-off-the-shelf compute servers that together process in real-time up to 24 coarse channels of 1.28 MHz bandwidth each. The system is highly flexible and scalable in terms of the number of antenna tiles and number of coarse channels to be correlated, and it offers a wide range of frequency/time resolution combinations to users. We conclude with a roadmap of future enhancements and extensions that we anticipate will be progressively rolled out over time.
Close galaxy flybys, interactions during which two galaxies inter-penetrate, are frequent and can significantly affect the evolution of individual galaxies. Equal-mass flybys are extremely rare and almost exclusively distant, while frequent flybys have mass ratios $q=0.1$ or lower, with a secondary galaxy penetrating deep into the primary. This can result in comparable strengths of interaction between the two classes of flybys and lead to essentially the same effects. To demonstrate this, emphasise and explore the role of the impact parameter further, we performed a series of N-body simulations of typical flybys with varying relative impact parameters $b/R_{\mathrm{vir},1}$ ranging from $0.114$ to $0.272$ of the virial radius of the primary galaxy. Two-armed spirals form during flybys, with radii of origin correlated with the impact parameter and strengths well approximated with an inverted S-curve. The impact parameter does not affect the shape of induced spirals, and the lifetimes of a distinguished spiral structure appear to be constant, $T_\mathrm{LF} \sim 2$ Gyr. Bars, with strengths anti-correlated with the impact parameter, form after the encounter is over in simulations with $b/R_{\mathrm{vir},1} \leq 0.178$ and interaction strengths $S\geq0.076$, but they are short-lived except for the stronger interactions with $S\geq0.129$. We showcase an occurrence of multiple structures (ring-like, double bar) that survives for an exceptionally long time in one of the simulations. Effects on the pre-existing bar instability, that develops much later, are diverse: from an acceleration of bar formation, little to no effect, to even bar suppression. There is no uniform correlation between these effects and the impact parameter, as they are secondary effects, happening later in a post-flyby stage. Classical bulges are resilient to flyby interactions, while dark matter halos can significantly spin up in the amount anti-correlated with the impact parameter. There is an offset angle between the angular momentum vector of the dark matter halo and that of a disc, and it correlates linearly with the impact parameter. Thus, flybys remain an important pathway for structural evolution within galaxies in the local Universe.
In order to gain more information on the 236 M dwarfs identified in the First Byurakan Survey (FBS) low-resolution (lr) spectroscopic database, Gaia EDR3 high-accuracy astrometric and photometric data and Transiting Exoplanet Survey Satellite (TESS) data are used to characterise these M dwarfs and their possible multiplicity. Among the sample of 236 relatively bright $(7.3 < K_S < 14.4)$ M dwarfs, 176 are new discoveries. The Gaia EDR3 G broadband magnitudes are in the range $11.3 < G < 17.1$. New distance information based on the EDR3 parallaxes are used to estimate the G-band absolute magnitudes. Nine FBS M dwarfs out of 176 newly discovered lie within 25 pc of the Sun. The FBS 0909-082 is the most distant $(r=780$ pc) M dwarf of the analysed sample, with a G-band absolute magnitude $M(G) = 9.18$, $M = 0.59$ M$_{\odot}$, $L = 0.13597$ L$_{\odot}$, and $T_{eff}$ = 3844 K; it can be classified as M1 - M2 subtype dwarf. The nearest is FBS 0250+167, a M7 subtype dwarf located at 3.83 pc from the Sun with a very high proper motion (5.13 arcsec yr$^{-1}$). The TESS estimated masses lie in the range 0.095 ($\pm$0.02) M$_{\odot}\leq$$M\leq$ 0.7 ($\pm$ 0.1) M$_{\odot}$ and $T_{eff}$ in the range 4000 K < $T_{eff}$ < 2790 K. We analyse colour-colour and colour-absolute magnitude diagram (CaMD) diagrams for the M dwarfs. Results suggest that 27 FBS M dwarfs are double or multiple systems. The observed spectral energy distribution (SED) for some of the M dwarfs can be used to classify potential infrared excess. Using TESS light curves, flares are detected for some FBS M dwarfs. Finally, for early and late sub-classes of the M dwarfs, the detection range for survey is estimated for the first time.
A new determination of the temperature of the intergalactic medium (IGM) over $3.9 \leq z \leq 4.3$ is presented. We applied the curvature method on a sample of 10 high-resolution quasar spectra from the Ultraviolet and Visual Echelle Spectrograph on the VLT/ESO. We measured the temperature at mean density by determining the temperature at the characteristic overdensity, which is tight function of the absolute curvature irrespective of $\unicode{x03B3}$. Under the assumption of fiducial value of $\unicode{x03B3} = 1.4$, we determined the values of temperatures at mean density $T_{0} = 7893^{+1417}_{-1226}$ K and $T_{0} = 8153^{+1224}_{-993}$ K for redshift range of $3.9 \leq z \leq 4.1$ and $4.1 \leq z \leq 4.3$, respectively. Even though the results show no strong temperature evolution over the studied redshift range, our measurements are consistent with an IGM thermal history that includes a contribution from He ii reionisation.
The radio signal transmitted by the Mars Express (MEX) spacecraft was observed regularly between the years 2013–2020 at X-band (8.42 GHz) using the European Very Long Baseline Interferometry (EVN) network and University of Tasmania’s telescopes. We present a method to describe the solar wind parameters by quantifying the effects of plasma on our radio signal. In doing so, we identify all the uncompensated effects on the radio signal and see which coronal processes drive them. From a technical standpoint, quantifying the effect of the plasma on the radio signal helps phase referencing for precision spacecraft tracking. The phase fluctuation of the signal was determined for Mars’ orbit for solar elongation angles from 0 to 180 deg. The calculated phase residuals allow determination of the phase power spectrum. The total electron content of the solar plasma along the line of sight is calculated by removing effects from mechanical and ionospheric noises. The spectral index was determined as $-2.43 \pm 0.11$ which is in agreement with Kolmogorov’s turbulence. The theoretical models are consistent with observations at lower solar elongations however at higher solar elongation ($>$160 deg) we see the observed values to be higher. This can be caused when the uplink and downlink signals are positively correlated as a result of passing through identical plasma sheets.
We present the Cosmological Double Radio Active Galactic Nuclei (CosmoDRAGoN) project: a large suite of simulated AGN jets in cosmological environments. These environments sample the intra-cluster media of galaxy clusters that form in cosmological smooth particle hydrodynamics (SPH) simulations, which we then use as inputs for grid-based hydrodynamic simulations of radio jets. Initially conical jets are injected with a range of jet powers, speeds (both relativistic and non-relativistic), and opening angles; we follow their collimation and propagation on scales of tens to hundreds of kiloparsecs, and calculate spatially resolved synthetic radio spectra in post-processing. In this paper, we present a technical overview of the project, and key early science results from six representative simulations which produce radio sources with both core- (Fanaroff-Riley Type I) and edge-brightened (Fanaroff-Riley Type II) radio morphologies. Our simulations highlight the importance of accurate representation of both jets and environments for radio morphology, radio spectra, and feedback the jets provide to their surroundings.
We present a new high-resolution neutral atomic hydrogen (Hi) survey of ring galaxies using the Australia Telescope Compact Array (ATCA). We target a sample of 24 ring galaxies from the Buta (1995) Southern Ring Galaxy Survey Catalogue in order to study the origin of resonance-, collisional- and interaction-driven ring galaxies. In this work, we present an overview of the sample and study their global and resolved Hi properties. In addition, we also probe their star formation properties by measuring their star formation rates (SFR) and their resolved SFR surface density profiles. We find that a majority of the barred galaxies in our sample are Hi-deficient, alluding to the effects of the bar in driving their Hi deficiency. Furthermore, for the secularly evolving barred ring galaxies in our sample, we apply Lindblad’s resonance theory to predict the location of the resonance rings and find very good agreement between predictions and observations. We identify rings of Hi gas and/or star formation co-located at one or the other major resonances. Lastly, we measure the bar pattern speed ($\Omega_{\textrm{bar}}$) for a sub-sample of our galaxies and find that the values range from 10–90 $\textrm{km s}^{-1}$kpc$^{-1}$, in good agreement with previous studies.
In Paper I, we presented an overview of the Southern-sky MWA Rapid Two-metre (SMART) survey, including the survey design and search pipeline. While the combination of MWA’s large field-of-view and the voltage capture system brings a survey speed of ${\sim} 450\, {\textrm{deg}}^{2}\,\textrm{h}^{-1}$, the progression of the survey relies on the availability of compact configuration of the Phase II array. Over the past few years, by taking advantage of multiple windows of opportunity when the compact configuration was available, we have advanced the survey to 75% of the planned sky coverage. To date, about 10% of the data collected thus far have been processed for a first-pass search, where 10 min of observation is processed for dispersion measures out to 250 ${\textrm{pc cm}}^{-3}$, to realise a shallow survey that is largely sensitive to long-period pulsars. The ongoing analysis has led to two new pulsar discoveries, as well as an independent discovery and a rediscovery of a previously incorrectly characterised pulsar, all from ${\sim} 3\% $ of the data for which candidate scrutiny is completed. In this sequel to Paper I, we describe the strategies for further detailed follow-up including improved sky localisation and convergence to timing solution, and illustrate them using example pulsar discoveries. The processing has also led to re-detection of 120 pulsars in the SMART observing band, bringing the total number of pulsars detected to date with the MWA to 180, and these are used to assess the search sensitivity of current processing pipelines. The planned second-pass (deep survey) processing is expected to yield a three-fold increase in sensitivity for long-period pulsars, and a substantial improvement to millisecond pulsars by adopting optimal de-dispersion plans. The SMART survey will complement the highly successful Parkes High Time Resolution Universe survey at 1.2–1.5 GHz, and inform future large survey efforts such as those planned with the low-frequency Square Kilometre Array (SKA-Low).