We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Various alternatives to the big bang model have been proposed, both inside and outside the scientific literature. We review some examples, and show how they deal (or not) with the evidence of astronomy.
The universe has a remarkably consistent elemental composition: about 75% hydrogen, 24% helium, and 1% heavier elements. Stars, for all their element-producing abilities, cannot have created these abundances. This points to another cosmic oven, in the universe’s hotter past.
The farther we look, the redder the light from galaxies appears. This fact points to a remarkable feature of our universe: it is not static. It is expanding.
Various alternatives to the big bang model have been proposed, both inside and outside the scientific literature. We review some examples, and show how they deal (or not) with the evidence of astronomy.
The Square Kilometre Array (SKA) is a planned large radio interferometer designed to operate over a wide range of frequencies, and with an order of magnitude greater sensitivity and survey speed than any current radio telescope. The SKA will address many important topics in astronomy, ranging from planet formation to distant galaxies. However, in this work, we consider the perspective of the SKA as a facility for studying physics. We review four areas in which the SKA is expected to make major contributions to our understanding of fundamental physics: cosmic dawn and reionisation; gravity and gravitational radiation; cosmology and dark energy; and dark matter and astroparticle physics. These discussions demonstrate that the SKA will be a spectacular physics machine, which will provide many new breakthroughs and novel insights on matter, energy, and spacetime.
The coronal heating problem is a long-standing perplexing issue. In this study, 13 solar activity indexes are used to investigate their phase relation with the sunspot number (SSN). Only three of them are found to statistically significantly lag the SSN (large-scale magnetic activity) by about one solar rotation period; the three indexes are total solar irradiance (TSI), the modified coronal index, and the solar wind velocity; the former two indexes may represent the long-term variation of energy quantity of the heated photosphere and corona, respectively. The Mount Wilson Sunspot Index (MWSI) and the Magnetic Plage Strength Index (MPSI), which reflect the large- and small-scale magnetic field activities, respectively, are also utilised to investigate their phase relations with the three indexes. The three indexes are found to be much more intimately related to MPSI than to MWSI, and MWSI statistically significantly leads TSI by about one rotation period. The heated corona is found to pulse perfectly in step with the small-scale magnetic activity rather than the large-scale magnetic activity; furthermore, combined with observations, our statistical evidence should thus attribute coronal heating firmly to small-scale magnetic activity phenomena, such as spicules, micro-flares, nano-flares, and others. The photosphere and the corona are synchronously heated, which should seemingly prefer magnetic reconnection heating to wave heating. In the long term, such a coronal heating way is inferred effective. Statistically, it is also small-scale magnetic activity phenomena that produce TSI enhancement. Coronal heating and solar wind acceleration are found to be synchronous, as standard models require.
KV UMa (XTE J1118+480) is an X-ray binary that is known to undergo outbursts in 2000 and 2005. This paper presents the discovery of a large outburst starting in 1927 on the archival photographic plates and an analysis of the long-term optical activity of this system. We used the photographic data from DASCH (Digital Access to a Sky Century @ Harvard). We placed the 1927 outburst in the context of the observed outbursts of KV UMa. We show that it is a double event, with a precursor similar to the one of the outbursts in 2000. We find a big difference between the 1927 and 2000 outbursts as regards the length of the gap between the precursor and the main outburst. It is more than 250 d in 1927, whereas it is about 20 d in 2000, although the brightnesses of all peaks are mutually comparable. We also show that the individual optical outbursts of KV UMa differ from each other by the duration of the stage of a slow decline of brightness (sometimes roughly a plateau). This determines the length of the entire main outburst. Both the peak magnitude and the brightness of the outburst when the slow decline transitions to a steep final decaying branch plausibly reproduce in all three outbursts. In the interpretation, the short duration of the precursor is caused by the fact that only the thermal-viscous instability operated in the accretion disk while also the tidal instability of the disk contributed in the subsequent main outburst.
The two pillars of modern physics are general relativity and quantum field theory, the former describes the large scale structure and dynamics of space-time, the latter, the microscopic constituents of matter. Combining the two yields quantum field theory in curved space-time, which is needed to understand quantum field processes in the early universe and black holes, such as the well-known Hawking effect. This book examines the effects of quantum field processes back-reacting on the background space-time which become important near the Planck time (10-43 sec). It explores the self-consistent description of both space-time and matter via the semiclassical Einstein equation of semiclassical gravity theory, exemplified by the inflationary cosmology, and fluctuations of quantum fields which underpin stochastic gravity, necessary for the description of metric fluctuations (space-time foams). Covering over four decades of thematic development, this book is a valuable resource for researchers interested in quantum field theory, gravitation and cosmology.
In this paper, we present the stationary axisymmetric configuration of a resistive magnetised thick accretion disc in the vicinity of external gravity and intrinsic dipolar magnetic field of a slowly rotating black hole. The plasma is described by the equations of fully general relativistic magnetohydrodynamics (MHD) along with the Ohm’s law and in the absence of the effects of radiation fields. We try to solve these two-dimensional MHD equations analytically as much as possible. However, we sometimes inevitably refer to numerical methods as well. To fully understand the relativistic geometrically thick accretion disc structure, we consider all three components of the fluid velocity to be non-zero. This implies that the magnetofluid can flow in all three directions surrounding the central black hole. As we get radially closer to the hole, the fluid flows faster in all those directions. However, as we move towards the equator along the meridional direction, the radial inflow becomes stronger from both the speed and the mass accretion rate points of view. Nonetheless, the vertical (meridional) speed and the rotation of the plasma disc become slower in that direction. Due to the presence of pressure gradient forces, a sub-Keplerian angular momentum distribution throughout the thick disc is expected as well. To get a concise analytical form of the rate of accretion, we assume that the radial dependency of radial and meridional fluid velocities is the same. This simplifying assumption leads to radial independency of mass accretion rate. The motion of the accreting plasma produces an azimuthal current whose strength is specified based on the strength of the external dipolar magnetic field. This current generates a poloidal magnetic field in the disc which is continuous across the disc boundary surface due to the presence of the finite resistivity for the plasma. The gas in the disc is vertically supported not only by the gas pressure but also by the magnetic pressure.
We describe the High-Precision Polarimetric Instrument-2 (HIPPI-2) a highly versatile stellar polarimeter developed at the University of New South Wales. Two copies of HIPPI-2 have been built and used on the 60-cm telescope at Western Sydney University’s (WSU) Penrith Observatory, the 8.1-m Gemini North Telescope at Mauna Kea and extensively on the 3.9-m Anglo-Australian Telescope (AAT). The precision of polarimetry, measured from repeat observations of bright stars in the SDSS g′band, is better than 3.5 ppm (parts per million) on the 3.9-m AAT and better than 11 ppm on the 60-cm WSU telescope. The precision is better at redder wavelengths and poorer in the blue. On the Gemini North 8-m telescope, the performance is limited by a very large and strongly wavelength-dependent TP that reached 1000’s of ppm at blue wavelengths and is much larger than we have seen on any other telescope.
The detection of fireballs streaks in astronomical imagery can be carried out by a variety of methods. The Desert Fireball Network uses a network of cameras to track and triangulate incoming fireballs to recover meteorites with orbits and to build a fireball orbital dataset. Fireball detection is done on-board camera, but due to the design constraints imposed by remote deployment, the cameras are limited in processing power and time. We describe the processing software used for fireball detection under these constrained circumstances. Two different approaches were compared: (1) A single-layer neural network with 10 hidden units that were trained using manually selected fireballs and (2) a more traditional computational approach based on cascading steps of increasing complexity, whereby computationally simple filters are used to discard uninteresting portions of the images, allowing for more computationally expensive analysis of the remainder. Both approaches allowed a full night’s worth of data (over a thousand 36-megapixel images) to be processed each day using a low-power single-board computer. We distinguish between large (likely meteorite-dropping) fireballs and smaller fainter ones (typical ‘shooting stars’). Traditional processing and neural network algorithms both performed well on large fireballs within an approximately 30 000-image dataset, with a true positive detection rate of 96% and 100%, respectively, but the neural network was significantly more successful at smaller fireballs, with rates of 67% and 82%, respectively. However, this improved success came at a cost of significantly more false positives for the neural network results, and additionally the neural network does not produce precise fireball coordinates within an image (as it classifies). Simple consideration of the network geometry indicates that overall detection rate for triangulated large fireballs is calculated to be better than 99.7% and 99.9%, by ensuring that there are multiple double-station opportunities to detect any one fireball. As such, both algorithms are considered sufficient for meteor-dropping fireball event detection, with some consideration of the acceptable number of false positives compared to sensitivity.
The Murchison Widefield Array (MWA) is an open access telescope dedicated to studying the low-frequency (80–300 MHz) southern sky. Since beginning operations in mid-2013, the MWA has opened a new observational window in the southern hemisphere enabling many science areas. The driving science objectives of the original design were to observe 21 cm radiation from the Epoch of Reionisation (EoR), explore the radio time domain, perform Galactic and extragalactic surveys, and monitor solar, heliospheric, and ionospheric phenomena. All together
$60+$
programs recorded 20 000 h producing 146 papers to date. In 2016, the telescope underwent a major upgrade resulting in alternating compact and extended configurations. Other upgrades, including digital back-ends and a rapid-response triggering system, have been developed since the original array was commissioned. In this paper, we review the major results from the prior operation of the MWA and then discuss the new science paths enabled by the improved capabilities. We group these science opportunities by the four original science themes but also include ideas for directions outside these categories.
We provide our first experience of Astronomy training as an in-service training of teachers of Science in Primary schools, and teachers of Geography, Physics and Mathematics in Secondary Schools necessitated due to lack of Astronomy specific training in their teacher training programs. The hands-on training was conducted in collaboration with the IAU Commission 46 Working Group program of Network of Astronomy Schools Education (NASE). Experiences from both face to face and virtual sessions conducted during the Covid19 period and in preparation of a major African solar eclipse, are discussed.
In this contribution I will briefly introduce the concept and objectives of the Open Universe Initiative, as well as describe the first steps of its implementation by Brazil, in conjunction with the United Nations Office for Outer Space Affairs (UNOOSA), aiming to encourage new interested parties to join the Initiative.
We propose a set of modern and stimulating activities related to the teaching of Astronomy orientated to high school or university students using smartphones. The activities are: a) the experimental simulation of asteroid light curves including the determination of the period of rotation of asteroids, b) the experimental simulation of exoplanet detection by transit method, c) the experimental simulation of stellar distances using parallax and d) the use of virtual and augmented reality.
Youths and kids in Indonesia since almost two decades ago have been showing significant increase of interest in space sciences, especially astronomy. One of the main factors is due to the annual event of National Science Olympiad which includes Astronomy as the subject. The increasing level of public interest, especially younger generation on astronomical events, such as eclipses, moon sightings, meteor showers has been constantly observed from time to time. Being aware that Astronomy course does not included in primary and secondary education level’s curricula, teachers are somewhat desperate and are not capable to play role as clearing house in science related to space. The IAU Network of Astronomy for School Education Network (IAU-NASE) course was started in 2016 in Machung University, East Java as the pilot project in Indonesia. The course has attracted significant interest from teachers and university staff, especially in East and Middle Java Provinces. Being confident with the enthusiasm of teachers who expressed that NASE course could fulfil their needs to teach and instruct students in a very efficient way, it was organized consecutively at Bandar Lampung, Lampung Province in 2018 and 2019 (hosted by Institut Teknologi Sumatera) and in 2020 at Bandung, West Java Province (hosted by Institut Teknologi Bandung). The most recent NASE course on 21–23 August 2020, conducted in on-line mode, was attended by 74 participants, although primarily aimed at 15 School teachers, and was quite successful. The on-line observational activity turned out to be the most impressive session for the participants. We report and review four years of IAU NASE courses in Indonesia, with various documentation and brief analysis of the positive impact to the teachers and instructors attitude in teaching astronomy at secondary level of education.
LLAGN are very important objects for studying as they are found in a large fraction of all massive galaxies. Nevertheless this topic needs more investigation as fraction of LLAGN in all AGN are much more higher than fraction of researches dedicated to LLAGN among all AGN studies. The goal of our work is checking out X-ray properties of LLAGN. For this purpose we created a sample of LLAGN by selecting most prominent LLAGN from literature and analyzed their X-ray spectral properties. As a result, we obtained 12 LLAGN and for 8 of them XMM X-ray observations are available. The spectra from one XMM camera, PN, were fitted with power law + absorption of neutral hydrogen. In the current report we present the previous results of this study. We plan to increase numbers of objects in our future studies.