We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Long-term monitoring observations of the 6.7 GHz methanol masers by Hitachi 32-m operated by Ibaraki University, which are named as “the Ibaraki 6.7 GHz Methanol Maser Monitor (iMet)”, have revealed that the periods of the flux variability of 6.7 GHz methanol masers in the five high-mass star-forming regions G05.900-0.430, G06.795-0.257, G10.472+0.027, G12.209-0.102 and G13.657-0.599 are over 1000 days. These periods are approximately twice the longest known period of 6.7 GHz methanol masers of 668 days for G196.45-1.68. The facts that the flux variation patterns show symmetric sine curves and that the luminosity of the central protostar and periods of maser flux variation are consistent with the expected period-luminosity (PL) relation suggest that the mechanism of maser flux variability of G05.900-0.430, G10.472+0.027 and G12.209-0.102 can be explained by protostellar pulsation instability. From the period-luminosity relation, central stars of these three sources are expected to be very high-mass protostars with a mass of : ∼40 M⊚ and a mass accretion rate of : ∼2×10-2M⊚yr-1. On the other hand, G06.795-0.257 and G13.657-0.599 have luminosities that are an order of magnitude smaller than that expected from PL relation, and the variation patterns are intermittent, suggesting a variation mechanism of these sources originated from binary system.
The Galactic ASKAP survey of OH (GASKAP-OH) is surveying the Milky Way Fourth Quadrant, the Galactic Centre, the Galactic Bulge and the Large Magellanic Cloud (LMC) in the 18-cm ground-state lines of the hydroxyl radical (OH), using Australia’s Square Kilometre Array Pathfinder (ASKAP) telescope. With an expected per-channel rms sensitivity of 36 mJy/beam in its shallowest regions, and a velocity channel width of 0.1 km s-1, GASKAP-OH is expected to discover hundreds of new star-formation and evolved star OH masers, as well as extensive absorption from quasi-thermal OH throughout the Galactic Plane. We here summarise the science goals and technical specifications of the survey, and report initial detection results from test observations. GASKAP-OH is expected to run for several years and is an open collaboration. Data products will be made available to the wider community as soon as they are verified.
Over the past 20 years, the Galactic plane has been surveyed at high resolution at wavelengths from 1 micron through to 20 cm. The combination of these surveys has produced large samples of deeply embedded young stars located across the Galactic disc. These continuum surveys are complemented by spectral line surveys of thermal, radio recombination, and molecular maser (OH, H2O, CH3OH) lines. The identified sources cover the whole range of evolutionary stages in the star formation process, allowing the physical properties of these stages to be measured. This information has been used to calculate the star formation efficiency and star formation rate of the Milky Way and to evaluate the impact of environment and location within the disc. This review provides an overview of some of the most significant studies in recent years and discusses how the evolutionary sequence has been used to investigate the correlation of other star formation tracers and maser associations.
Several radio sources have been detected in the high-mass star-forming region W75N(B), among them the massive young stellar objects VLA 1 and VLA 2 are of great interest. These are thought to be in different evolutionary stages. In particular, VLA 1 is at the early stage of the photoionization and it is driving a thermal radio jet, while VLA 2 is a thermal, collimated ionized wind surrounded by a dusty disk or envelope. In both sources 22 GHz H2O masers have been detected in the past. Those around VLA 1 show a persistent linear distribution along the thermal radio jet and those around VLA 2 have instead traced the evolution from a non-collimated to a collimated outflow over a period of ∼20 years. The magnetic field inferred from the H2O masers showed a rotation of its orientation according to the direction of the major-axis of the shell around VLA 2, while it is immutable around VLA 1.
We further monitored the polarized emission of the 22 GHz H2O masers around both VLA 1 and VLA 2 over a period of six years with the European VLBI Network for a total of four epochs separated by two years from 2014 to 2020. We here present the results of our monitoring project by focusing on the evolution of the maser distribution and of the magnetic field around the two massive young stellar objects.
Evolved stars on the asymptotic giant branch and red supergiants have multiple processes that can be studied in the (sub)mm, including stellar surfaces, circumstellar thermal gas and dust, and masers. Telescopes such as APEX and ALMA have opened the possibility to perform studies that are revealing new information on these, as well as on the role of binaries in shaping stellar winds and the evolution to planetary nebulae. Here, we discuss some recent results for (sub)mm observations towards evolved stars focusing particularly on masers. This includes SiO and water masers, as well as ALMA high angular resolution observations of HCN masers towards a carbon-rich star.
High resolution (0."26 × 0."13 (70 × 35 pc)) L-band (18 cm) OH megamaser (OHM) e-Merlin observations of the LIRG Zw049.057 show that the emission is emerging from a low velocity outflowing structure - which is foreground to a fast, dense and collimated molecular outflow detected by ALMA. The extremely dusty compact obscured nucleus (CON) of Zw049.057 has no (or only little) OHM emission associated with it - possibly because of too high number densities that quench the OHM. In contrast we detect 6 cm H2CO emission primarily from the CON-region. We suggest that the OHM-region of Zw049.057 is not directly associated with star formation, but instead occurs in a wide-angle, slow outflow that surrounds the fast and dense outflow. The OHM is pumped by IR emission that likely stems from activities in the nucleus. We briefly discuss how OHM emission can be used as a probe of LIRG-CON galaxies.
The African VLBI Network (AVN) is slowly becoming a reality. A couple of successful fringe test observations have been conducted even as single-dish maser monitoring observations constitute the main activity on the telescopes (HartRAO 26 m and Ghana 32 m). Some of the recent observational results from the AVN telescopes includes detection of velocity drifts in masers. Although MeerKAT is largely designed for high sensitivity continuum and HI science, its bands cover some masers and is already making impressive discoveries. The need to grow the critical mass of radio astronomers in the African continent persists. The NWU 4-dish interferometer, the Nigeria 3.7 m radio telescope and the African Millimeter Telescope (AMT) are some of the initiatives that will significantly improve the statistics of radio astronomers in Africa.
The investigation of the metal-poor tail in the Galactic bulge provides unique information on the early Milky Way assembly and evolution. A chemo-dynamical analysis of 17 very metal-poor stars (VMP, [Fe/H < – 2.0]) selected from the Pristine Inner Galaxy Survey was carried out based on Gemini/GRACES spectra. The chemistry suggests that the majority of our stars are very similar to metal-poor stars in the Galactic halo. Orbits calculated from Gaia EDR3 imply these stars are brought into the bulge during the earliest Galactic assembly. Most of our stars have large [Na,Ca/Mg] abundances, and thus show little evidence of enrichment by pair-instability supernovae. Two of our stars (P171457, P184700) have chemical abundances compatible with second-generation globular cluster stars, suggestive of the presence of ancient and now dissolved globular clusters in the inner Galaxy. One of them (P171457) is extremely metal-poor ([Fe/H < – 3.0]) and well below the metallicity floor of globular clusters, which supports the growing evidence for the existence of lower-metallicity globular clusters in the early Universe. A third star (P180956, [Fe/H]∼ – 2) has low [Na,Ca/Mg] and very low [Ba/Fe] for its metallicity, which are consistent with formation in a system polluted by only one or a few low-mass supernovae. Interestingly, its orbit is confined to the Galactic plane, like other very metal-poor stars found in the literature, which have been associated with the earliest building blocks of the Milky Way.
We present astrometric very long baseline interferometry (VLBI) studies of AGB stars. To understand the properties and evolution of AGB stars, distances are an important parameter. The distribution and kinematics of their circumstellar matter are also revealed with the VLBI method. We used the VERA array to observe 22 GHz H2O masers in various subclasses of AGB stars. Parallaxes of the three OH/IR stars NSV17351, OH39.7+1.5, IRC−30363, and the Mira-type variable star AW Tau were newly obtained. We present the circumstellar distribution and kinematics of H2O masers around NSV17351. The absolute magnitudes in mid-infrared bands of OH/IR stars with very long pulsation periods were investigated and a period-magnitude relation in the WISE W3 band, MW3 = (−7.21 ± 1.18) log P + (9.25 ± 3.09), was found for the Galactic AGB stars. The VLBI is still a powerful tool for parallax measurements of the Galactic AGB stars surrounded by thick dust shells.
The Andromeda galaxy (M 31) has experienced a tumultuous merger history as evidenced by the many substructures present in its inner halo. We use planetary nebulae (PNe) as chemodynamic tracers to shed light on the recent merger history of M 31. We identify the older dynamically hotter thicker disc in M 31 and a distinct younger dynamically colder thin disc. The two discs are also chemically distinct with the PN chemodynamics implying their formation in a ‘wet’ major merger (mass ratio ∼ 1:5) ∼ 2.5–4.5 Gyr ago. From comparison of PN line-of-sight velocities in the inner halo substructures with predictions of a major-merger model in M 31, we find that the same merger event that formed the M 31 thick and thin disc is also responsible for forming these substructures. We thereby obtain constraints on the recent formation history of M 31 and the properties of its cannibalized satellite.
Dramatic recent progress in understanding galactic chemical evolution (GCE) has been driven partly by direct observations of the distant past with HST and JWST and partly by archeaological interpretation of stellar abundances from giant high-resolution spectroscopic surveys (APOGEE, GALAH) and the complementary power of Gaia astrometry and photometry. Focusing on archaeology, I give a rapid-fire, and I hope synthesizing, review of work my collaborators and I have done on theoretical modeling and observational interpretation. I discuss (1) the interleaved but distinguishable roles of stellar scale astrophysics and galactic scale astrophysics in governing GCE, (2) the use of abundance ratio trends to empirically infer nucleosynthetic yields, (3) the uncertainty in the overall scale of yields and its degeneracy with the importance of galactic outflows, (4) the emergence of equilibrium in GCE, (5) the dimensionality of the stellar distribution in chemical abundance space, and (6) insights from chemical abundances on the early history of the Milky Way, including measurements of the intrinsic scatter of abundance ratios in metal-poor stars (-2≤[Fe/H] ≤-1) suggesting that a typical halo star at this metallicity is enriched by the products of N∼50 supernovae mixed over ∼105M⊚ of star-forming gas.
We review the local determination of the Hubble constant, H0, focusing on recent measurements of a distance ladder constructed from geometry, Cepheid variables and Type Ia supernovae (SNe Ia). We explain in some detail the components of the ladder: (1) geometry from Milky Way parallaxes, masers in NGC 4258 and detached eclipsing binaries in the Large Magellanic Cloud; (2) measurements of Cepheids with the Hubble Space Telescope (HST) in these anchors and in the hosts of 42 SNe Ia; and (3) SNe Ia in the Hubble flow. Great attention to negating systematic uncertainties through the use of differential measurements is reviewed. A wide array of tests are discussed. The measurements provide a strong indication of a discrepancy between the local measure of H0 and its value predicted by Λ Cold Dark Matter theory, calibrated by the cosmic microwave background (Planck), a decade-long challenge known as the ‘Hubble Tension’. We present new measurements with the James Webb Space Telescope of >320 Cepheids on both rungs of the distance ladder, in a SN Ia host and the geometric calibrator NGC 4258, showing good agreement with the same as measured with HST. This provides strong evidence that systematic errors in HST Cepheid photometry do not play a significant role in the present Hubble Tension. Future measurements are expected to refine the local determination of the Hubble constant.
We report the results of a 7-year monitoring program using the Australia Telescope Compact Array (ATCA) for the 9.9 GHz class I methanol maser in G331.13-0.24 where a periodic class II methanol maser is present. The great deal of the project was to control systematics at an unprecedented level. Although no periodic flux variation was found, the maser shows a very stable decline of 166±7 μJy/day. The radial velocity of the maser is stable down to 1 m/s level. We also report a marginal periodic signal in radial velocity (comparable to the level of systematics) of about 20±7 cm/s with the period of 475±22 days, close to that of the 6.7-GHz maser in the source. No hyperfine split was detected which suggests preferential excitation of a single hyperfine transition.
In the context of a project aimed to provide an updated theoretical scenario for various classes of radially pulsating stars, we present the first results obtained for anomalous Cepheids. By adopting reliable and updated evolutionary prescriptions concerning the luminosity levels for various core He-burning stellar models with masses suitable for entering the instability strip, we have computed nonlinear convective pulsation models for both fundamental and first-overtone mode anomalous Cepheids by exploring the impact of varying the metal abundance as well as the efficiency of super-adiabatic convection. These numerical simulations have allowed us to retrieve the boundaries of the instability strip and all relevant pulsation properties, namely period, amplitude, bolometric light and radial velocity curves. This theoretical scenario has been transformed into the Gaia photometric system to derive the first theoretical Period–Luminosity–Colour and Period–Wesenheit relations in the Gaia bands.
Like our Moon, the large icy satellites of Jupiter are thought to be in a Cassini State, an equilibrium rotation state characterized by a synchronous rotation rate and a precession rate of the rotation axis equal to that of the normal to the orbit. In these equilibrium states (up to four Cassini States are possible for a solid and rigid satellite), the spin axis of the satellite, the normal to its orbit and the normal to the inertial plane remain coplanar with an obliquity that remains theoretically constant. However, as the gravitational torque exerted on the satellite shows small periodic variations, the orientation of the rotation axis will also vary with time and nutations in obliquity will appear.
Here we present a dynamical model for the study of the Cassini States. This model includes the coupling between the polar motion and the spin axis precession/nutation which is neglected in the classical studies. We study the influence of the triaxiality of Ganymede on its four possible Cassini States, use a Toy model of the Moon to illustrate the nutations in obliquity obtained with the dynamical model, and investigate the influence of the presence of a subsurface ocean on the Cassini State I of Europa.
Rare systems with multiple sources strongly lensed by a single galaxy provide the most robust way to explore the geometry of the Universe and to study the inner mass structure of lens galaxies. We present here a study of the SDSS J0100+1818 deflector, analyzing its total and baryonic mass distributions. The system comprises an ultra-massive early-type galaxy, surrounded by ten multiple images of three background sources. Exploiting high-resolution HST photometry and VLT/X-shooter spectroscopy we conduct a strong lensing analysis with the software GLEE to reconstruct the complex surface brightness distributions of the background sources over approximately 7200 HST pixels. These results are presented in our recent paper, Bolamperti et al. (2023). Finally, we present some preliminary results from new VLT/MUSE observations, that will allow us to build a new strong lensing+dynamics joint model and measure the values of the total matter density and of the cosmological constant parameters, Ωm and ΩΛ.
In 2015, the high-mass star-forming region NGC6334I-MM1 underwent an accretion burst. Using VERA, we monitored 22 GHz water masers before and during the accretion burst to observe the changes in the maser spatial and velocity distributions in the region. The masers in CM2-W2 and MM1-W1 displayed variability that could be attributed to the accretion burst. The bright masers in CM2-W2 were found to better trace the shock structure as the epochs progressed. The mean 3D speeds derived from the proper motions were 50 km/s and 54 km/s for the pre-burst and burst epochs respectively. High-velocity proper motions were found at the southern edges of the N-S (∼80 km s−1) and NW-SE (∼150 km s−1) bipolar outflows. The precise mechanism of the flaring of the water masers due to the accretion burst has yet to be investigated.
OH megamasers (OHMs) are luminous masers found in (ultra-)luminous infrared galaxies ([U]LIRGs). OHMs are signposts of major gas-rich mergers associated with some of the most extreme star forming regions in our universe. The dominant OH masing line, occurring at 1667 MHz, can spoof the 1420 MHz neutral hydrogen (HI) line in untargeted HI emission line surveys. While only ∼120 OHMs are currently known, HI surveys on next-generation radio telescopes, such as the Square Kilometre Array (SKA) and its precursors, will detect unprecedented numbers of OHMs. This surge in detections will not only fundamentally change what we know about the OHM population, but will also unlock our ability to implement OHMs as tracers of major mergers and extreme star formation on cosmic scales. Here we present predictions for the number of OHMs that will be detected by these surveys. We also present our novel methods for identifying these interlopers using a k-Nearest Neighbors machine learning algorithm. Preliminary data from HI surveys on precursor SKA telescopes is being used to vet and strengthen these methods as well as give us a first look at a new era in OHM science. From a detection of one of the most luminous OHMs to the discovery of a megamaser at a record-shattering redshift, these new sources are glimpses into how our understanding of the known OHM population will soon be expanding and shifting rapidly and how they will influence our understanding of galaxy evolution.
The Bulge Asymmetries and Dynamic Evolution (BAaDE) project attempts to improve our knowledge about the structure and dynamics of the inner Milky Way galaxy by sampling tens of thousands of infrared color-selected evolved stars with circumstellar envelopes (CSEs). The SiO masers in these CSEs yield the object’s line-of-sight velocity instantly and accurately, and together provide a sample of point-mass particles that are complementary to high-mass star formation masers typically found in the Galactic Disk as well as to optical samples that cannot reach into the Galactic Plane and Bulge due to extremely high visual extinction. This presentation introduces the BAaDE survey and highlights current results.
This is a study about the dynamical stability of the GJ 876 exoplanetary system. The phase space of initial conditions (ICs) is characterized using the MEGNO indicator of chaos and the Shannon entropy approach for estimations of diffusivity. The results are compared to analyze correlations between the chaotic layers and the instability timescales. The long-term dynamical behavior of the system is reminiscent of the stable chaos, at least within the system’s lifetime.