Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T20:49:12.577Z Has data issue: false hasContentIssue false

New Dimensions of Galactic Chemical Evolution

Published online by Cambridge University Press:  13 February 2024

David H. Weinberg*
Affiliation:
Department of Astronomy and CCAPP, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210, USA.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dramatic recent progress in understanding galactic chemical evolution (GCE) has been driven partly by direct observations of the distant past with HST and JWST and partly by archeaological interpretation of stellar abundances from giant high-resolution spectroscopic surveys (APOGEE, GALAH) and the complementary power of Gaia astrometry and photometry. Focusing on archaeology, I give a rapid-fire, and I hope synthesizing, review of work my collaborators and I have done on theoretical modeling and observational interpretation. I discuss (1) the interleaved but distinguishable roles of stellar scale astrophysics and galactic scale astrophysics in governing GCE, (2) the use of abundance ratio trends to empirically infer nucleosynthetic yields, (3) the uncertainty in the overall scale of yields and its degeneracy with the importance of galactic outflows, (4) the emergence of equilibrium in GCE, (5) the dimensionality of the stellar distribution in chemical abundance space, and (6) insights from chemical abundances on the early history of the Milky Way, including measurements of the intrinsic scatter of abundance ratios in metal-poor stars (-2≤[Fe/H] ≤-1) suggesting that a typical halo star at this metallicity is enriched by the products of N∼50 supernovae mixed over ∼105M of star-forming gas.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Andrews, B. H., Weinberg, D. H., Johnson, J. A., Bensby, T., & Feltzing, S. 2012, ActaA, 62, 269.Google Scholar
Andrews, B. H., Weinberg, D. H., Schönrich, R., & Johnson, J. A. 2017, ApJ, 835, 224 CrossRefGoogle Scholar
Asplund, M., Grevesse, N., Sauval, A. J., et al. 2009, ARA&A, 47, 481.Google Scholar
Belokurov, V. & Kravtsov, A. 2022, MNRAS, 514, 689.Google Scholar
Blanton, M. R., Bershady, M. A., Abolfathi, B., et al. 2017, AJ, 154, 28 Google Scholar
Buder, S., Sharma, S., Kos, J., et al. 2021, MNRAS, 506, 150.Google Scholar
Chiappini, C., Matteucci, F., & Gratton, R. 1997, ApJ, 477, 765.Google Scholar
Chieffi, A. & Limongi, M. 2004, ApJ, 608, 405.Google Scholar
Conroy, C., Bonaca, A., Cargile, P., et al. 2019, ApJ, 883, 107.Google Scholar
Conroy, C., Weinberg, D. H., Naidu, R. P., et al. 2022, arXiv:2204.02989.Google Scholar
Davé, R., Finlator, K., & Oppenheimer, B. D. 2012, MNRAS, 421, 98.Google Scholar
Eisenstein, D. J., Weinberg, D. H., Agol, E., et al. 2011, AJ, 142, 72 Google Scholar
Finlator, K. & Davé, R. 2008, MNRAS, 385, 2181.Google Scholar
Collaboration, Gaia, Brown, A. G. A., Vallenari, A., et al. 2021, A&A, 649, A1.Google Scholar
Collaboration, Gaia, Vallenari, A., Brown, A. G. A. et al. 2023, A&A, 674, A1 Google Scholar
Griffith, E., Johnson, J. A., & Weinberg, D. H. 2019, ApJ, 886, 84 CrossRefGoogle Scholar
Griffith, E., Weinberg, D. H., Johnson, J. A., et al. 2021a, ApJ, 909, 77.Google Scholar
Griffith, E. J., Sukhbold, T., Weinberg, D. H., et al. 2021b, ApJ, 921, 73.Google Scholar
Griffith, E. J., Weinberg, D. H., Buder, S., et al. 2022, ApJ, 931, 23.Google Scholar
Griffith, E. J., Johnson, J. A., Weinberg, D. H., et al. 2023, ApJ, 944, 47.Google Scholar
Hayden, M. R., Bovy, J., Holtzman, J. A., et al. 2015, ApJ, 808, 132.Google Scholar
Hayes, C. R., Masseron, T., Sobeck, J., et al. 2022, ApJS, 262, 34.Google Scholar
Johnson, J. W., Weinberg, D. H., Vincenzo, F., et al. 2021, MNRAS, 508, 4484.Google Scholar
Johnson, J. W., Weinberg, D. H., Vincenzo, F., et al. 2023, MNRAS, 520, 782.Google Scholar
Kobayashi, C., Umeda, H., Nomoto, K., Tominaga, N., Ohkubo, T. 2006, ApJ, 653, 1145 CrossRefGoogle Scholar
Kollmeier, J. A., Zasowski, G., Rix, H.-W., et al. 2017, arXiv e-prints, arXiv:1711.03234.Google Scholar
Kroupa, P., Tout, C. A., & Gilmore, G. 1993, MNRAS, 262, 545.Google Scholar
Kroupa, P. 2001, MNRAS, 322, 231.Google Scholar
Krumholz, M. R. & Ting, Y.-S. 2018, MNRAS, 475, 2236.Google Scholar
Larson, R. B. 1972, Nature Physical Science, 236, 7.CrossRefGoogle Scholar
Leroy, A. K., Walter, F., Brinks, E., et al. 2008, AJ, 136, 2782.Google Scholar
Limongi, M. & Chieffi, A. 2006, ApJ, 647, 483.Google Scholar
Linsky, J. L., Draine, B. T., Moos, H. W., et al. 2006, ApJ, 647, 1106.Google Scholar
Loebman, S. R., Debattista, V. P., Nidever, D. L., et al. 2016, ApJ, 818, L6.Google Scholar
Luo, A.-L., Zhao, Y.-H., Zhao, G. et al. 2015, RAA, 15, 1095 Google Scholar
Majewski, S. R., Schiavon, R. P., Frinchaboy, P. M., et al. 2017, AJ, 154, 94.Google Scholar
Maoz, D. & Graur, O. 2017, ApJ, 848, 25.Google Scholar
Matteucci, F. & François, P. 1989, MNRAS, 239, 885 CrossRefGoogle Scholar
Matteucci, F. 2012, Chemical Evolution of Galaxies: Astronomy and Astrophysics Library. ISBN 978-3-642-22490-4. Springer-Verlag Berlin Heidelberg, 2012.Google Scholar
Miller, G. E. & Scalo, J. M. 1979, ApJS, 41, 513.Google Scholar
Minchev, I., Chiappini, C., & Martig, M. 2013, A&A, 558, A9.Google Scholar
Ness, M. K., Johnston, K. V., Blancato, K., et al. 2019, ApJ, 883, 177.Google Scholar
Pagel, B. E. J. 1997, Nucleosynthesis and Chemical Evolution of Galaxies, by Bernard E. J. Pagel, pp. 392. ISBN 0521550610. Cambridge, UK: Cambridge University Press, October 1997, 392Google Scholar
Patil, A. A., Bovy, J., Eadie, G., et al. 2022, ApJ, 926, 51.Google Scholar
Peeples, M. S. & Shankar, F. 2011, MNRAS, 417, 2962.Google Scholar
Prantzos, N. & Aubert, O. 1995, A&A, 302, 69 CrossRefGoogle Scholar
Rix, H.-W., Chandra, V., Andrae, R., et al. 2022, ApJ, 941, 45.Google Scholar
Rockosi, C. M., Lee, Y. S., Morrison, H. L., et al. 2022, ApJS, 259, 60.Google Scholar
Rodrguez, Ó., Maoz, D., & Nakar, E. 2022, arXiv:2209.05552.Google Scholar
Sandford, N. R., Weinberg, D. H., Weisz, D. R., et al. 2022, arXiv:2210.17045.Google Scholar
Schönrich, R., & Binney, J. 2009, MNRAS, 396, 203.Google Scholar
Spitoni, E., Silva Aguirre, V., Matteucci, F., et al. 2019, A&A, 623, A60.Google Scholar
Sukhbold, T., Ertl, T., Woosley, S. E., et al. 2016, ApJ, 821, 38.Google Scholar
Sun, J., Leroy, A. K., Ostriker, E. C., et al. 2023, ApJ, 945, L19.Google Scholar
Talbot, R. J. Jr & Arnett, W. D. 1971, ApJ, 170, 409.Google Scholar
Ting, Y.-S., Freeman, K. C., Kobayashi, C., De Silva, G. M., & Bland-Hawthorn, J. 2012, MNRAS, 421, 1231.Google Scholar
Ting, Y.-S. & Weinberg, D. H. 2022, ApJ, 927, 209.Google Scholar
Tinsley, B. M. 1980, Fundamentals Cosmic Phys., 5, 287.Google Scholar
Vincenzo, F., Weinberg, D. H., Montalbán, J., et al. 2021, arXiv:2106.03912.Google Scholar
Weinberg, D. H. 2017, ApJ, 851, 25.Google Scholar
Weinberg, D. H., Andrews, B. H., & Freudenburg, J. 2017, ApJ, 837, 183.Google Scholar
Weinberg, D. H., Holtzman, J. A., Hasselquist, S., et al. 2019, ApJ, 874, 102.Google Scholar
Weinberg, D. H., Holtzman, J. A., Johnson, J. A., et al. 2022, ApJS, 260, 32.Google Scholar
White, S. D. M. & Springel, V. 2000, The First Stars, 327.Google Scholar
Yanny, B., Rockosi, C., Newberg, H. J., et al. 2009, AJ, 137, 4377.Google Scholar
Yanny, B. & Gardner, S. 2013, ApJ, 777, 91 CrossRefGoogle Scholar
Zahid, H. J., Dima, G. I., Kewley, L. J., Erb, D. K., Davé, R. 2012, ApJ, 757, 54 CrossRefGoogle Scholar