Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T05:15:32.208Z Has data issue: false hasContentIssue false

Extended surface brightness modeling of three sources strongly lensed by an ultra-massive elliptical galaxy

Published online by Cambridge University Press:  04 March 2024

Andrea Bolamperti*
Affiliation:
Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova, Italy Istituto Nazionale di Astrofisica (INAF), Osservatorio di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München, Germany.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Rare systems with multiple sources strongly lensed by a single galaxy provide the most robust way to explore the geometry of the Universe and to study the inner mass structure of lens galaxies. We present here a study of the SDSS J0100+1818 deflector, analyzing its total and baryonic mass distributions. The system comprises an ultra-massive early-type galaxy, surrounded by ten multiple images of three background sources. Exploiting high-resolution HST photometry and VLT/X-shooter spectroscopy we conduct a strong lensing analysis with the software GLEE to reconstruct the complex surface brightness distributions of the background sources over approximately 7200 HST pixels. These results are presented in our recent paper, Bolamperti et al. (2023). Finally, we present some preliminary results from new VLT/MUSE observations, that will allow us to build a new strong lensing+dynamics joint model and measure the values of the total matter density and of the cosmological constant parameters, Ωm and ΩΛ.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Barkana, R. 1998, Fast Calculation of a Family of Elliptical Mass Gravitational Lens Models. ApJ, 502(2), 531537.CrossRefGoogle Scholar
Barnabè, M., Spiniello, C., Koopmans, L. V. E., et al. 2013, A low-mass cut-off near the hydrogen burning limit for Salpeter-like initial mass functions in early-type galaxies. MNRAS, 436(1), 253258.CrossRefGoogle Scholar
Bartelmann, M. 2010, TOPICAL REVIEW Gravitational lensing. Classical and Quantum Gravity, 27(23), 233001.CrossRefGoogle Scholar
Belokurov, V., Evans, N. W., Hewett, P. C., et al. 2009, Two new large-separation gravitational lenses from SDSS. MNRAS, 392(1), 104112.CrossRefGoogle Scholar
Bergamini, P., Rosati, P., Mercurio, A., et al. 2019, Enhanced cluster lensing models with measured galaxy kinematics. A&A, 631, A130.Google Scholar
Bolamperti, A., Grillo, C., Cañameras, R., et al. 2023, Reconstructing the extended structure of multiple sources strongly lensed by the ultra-massive elliptical galaxy SDSS J0100+1818. A&A, 671, A60.Google Scholar
Cañameras, R., Nesvadba, N., Kneissl, R., et al. 2017,a Planck’s dusty GEMS. IV. Star formation and feedback in a maximum starburst at z = 3 seen at 60-pc resolution. A&A, 604a, A117.Google Scholar
Cañameras, R., Nesvadba, N. P. H., Kneissl, R., et al. 2017,b Planck’s dusty GEMS. III. A massive lensing galaxy with a bottom-heavy stellar initial mass function at z = 1.5. A&A, 600b, L3.Google Scholar
Caminha, G. B., Grillo, C., Rosati, P., et al. 2016, CLASH-VLT: A highly precise strong lensing model of the galaxy cluster RXC J2248.7-4431 (Abell S1063) and prospects for cosmography. A&A, 587, A80.CrossRefGoogle Scholar
Cao, S., Pan, Y., Biesiada, M., et al. 2012, Constraints on cosmological models from strong gravitational lensing systems. J. Cosmology Astropart. Phys., 2012(3), 016.CrossRefGoogle Scholar
Cava, A., Schaerer, D., Richard, J., et al. 2018, The nature of giant clumps in distant galaxies probed by the anatomy of the cosmic snake. Nature Astronomy, 2, 7682.CrossRefGoogle Scholar
Collett, T. E., Auger, M. W., Belokurov, V., et al. 2012, Constraining the dark energy equation of state with double-source plane strong lenses. MNRAS, 424(4), 28642875.CrossRefGoogle Scholar
Collett, T. E. & Smith, R. J. 2020, A triple rollover: a third multiply imaged source at z 6 behind the Jackpot gravitational lens. MNRAS, 497(2), 16541660.CrossRefGoogle Scholar
Förster Schreiber, N. M., Genzel, R., Bouché, N., et al. 2009, The SINS Survey: SINFONI Integral Field Spectroscopy of z 2 Star-forming Galaxies. ApJ, 706(2), 13641428.CrossRefGoogle Scholar
Gavazzi, R., Treu, T., Rhodes, J. D., et al. 2007, The Sloan Lens ACS Survey. IV. The Mass Density Profile of Early-Type Galaxies out to 100 Effective Radii. ApJ, 667(1), 176190.CrossRefGoogle Scholar
Grillo, C. 2010, Projected Central Dark Matter Fractions and Densities in Massive Early-type Galaxies from the Sloan Digital Sky Survey. ApJ, 722(1), 779787.CrossRefGoogle Scholar
Grillo, C., Gobat, R., Lombardi, M., & Rosati, P. 2009, Photometric mass and mass decomposition in early-type lens galaxies. A&A, 501(2), 461474.Google Scholar
Grillo, C., Lombardi, M., & Bertin, G. 2008, Cosmological parameters from strong gravitational lensing and stellar dynamics in elliptical galaxies. A&A, 477(2), 397406.Google Scholar
Grillo, C., Rosati, P., Suyu, S. H., et al. 2018, Measuring the Value of the Hubble Constant “à la Refsdal”. ApJ, 860(2), 94.CrossRefGoogle Scholar
Grillo, C., Rosati, P., Suyu, S. H., et al. 2020, On the Accuracy of Time-delay Cosmography in the Frontier Fields Cluster MACS J1149.5+2223 with Supernova Refsdal. ApJ, 898(1), 87.CrossRefGoogle Scholar
Grillo, C., Suyu, S. H., Rosati, P., et al. 2015, CLASH-VLT: Insights on the Mass Substructures in the Frontier Fields Cluster MACS J0416.1-2403 through Accurate Strong Lens Modeling. ApJ, 800(1), 38.CrossRefGoogle Scholar
Hezaveh, Y. D., Dalal, N., Marrone, D. P., et al. 2016, Detection of Lensing Substructure Using ALMA Observations of the Dusty Galaxy SDP.81. ApJ, 823(1), 37.CrossRefGoogle Scholar
Johnson, L. E., Irwin, J. A., White, Raymond E., I., et al. 2018, Using Strong Gravitational Lensing to Identify Fossil Group Progenitors. ApJ, 856(2), 131.CrossRefGoogle Scholar
Jullo, E., Natarajan, P., Kneib, J. P., et al. 2010, Cosmological constraints from strong gravitational lensing in clusters of galaxies. Science, 329, 924927.CrossRefGoogle ScholarPubMed
Kneib, J. P., Ellis, R. S., Smail, I., et al. 1996, Hubble Space Telescope Observations of the Lensing Cluster Abell 2218. ApJ, 471, 643.CrossRefGoogle Scholar
Loeb, A. & Peebles, P. J. E. 2003, Cosmological Origin of the Stellar Velocity Dispersions in Massive Early-Type Galaxies. ApJ, 589(1), 2934.CrossRefGoogle Scholar
Newman, A. B., Ellis, R. S., & Treu, T. 2015, Luminous and Dark Matter Profiles from Galaxies to Clusters: Bridging the Gap with Group-scale Lenses. ApJ, 814(1), 26.CrossRefGoogle Scholar
Ritondale, E., Vegetti, S., Despali, G., et al. 2019, Low-mass halo perturbations in strong gravitational lenses at redshift z ∼ 0.5 are consistent with CDM. MNRAS, 485(2), 2179–2193.CrossRefGoogle Scholar
Rizzo, F., Vegetti, S., Fraternali, F., et al. 2021, Dynamical properties of z 4.5 dusty star-forming galaxies and their connection with local early-type galaxies. MNRAS, 507(3), 39523984.CrossRefGoogle Scholar
Sand, D. J., Treu, T., Smith, G. P., & Ellis, R. S. 2004, The Dark Matter Distribution in the Central Regions of Galaxy Clusters: Implications for Cold Dark Matter. ApJ, 604(1), 88107.CrossRefGoogle Scholar
Schneider, P. 2014, Can one determine cosmological parameters from multi-plane strong lens systems? A&A, 568, L2.Google Scholar
Schuldt, S., Chiriv, G., Suyu, S. H., et al. 2019, Inner dark matter distribution of the Cosmic Horseshoe (J1148+1930) with gravitational lensing and dynamics. A&A, 631, A40.Google Scholar
Sonnenfeld, A., Jaelani, A. T., Chan, J., et al. 2019, Survey of gravitationally-lensed objects in HSC imaging (SuGOHI). III. Statistical strong lensing constraints on the stellar IMF of CMASS galaxies. A&A, 630, A71.Google Scholar
Sonnenfeld, A., Treu, T., Marshall, P. J., et al. 2015, The SL2S Galaxy-scale Lens Sample. V. Dark Matter Halos and Stellar IMF of Massive Early-type Galaxies Out to Redshift 0.8. ApJ, 800(2), 94.CrossRefGoogle Scholar
Stark, D. P., Auger, M., Belokurov, V., et al. 2013, The CASSOWARY spectroscopy survey: a new sample of gravitationally lensed galaxies in SDSS. MNRAS, 436(2), 10401056.CrossRefGoogle Scholar
Suyu, S. H., Auger, M. W., Hilbert, S., et al. 2013, Two Accurate Time-delay Distances from Strong Lensing: Implications for Cosmology. ApJ, 766(2), 70.CrossRefGoogle Scholar
Suyu, S. H., Bonvin, V., Courbin, F., et al. 2017, H0LiCOW - I. H0 Lenses in COSMOGRAIL’s Wellspring: program overview. MNRAS, 468(3), 25902604.CrossRefGoogle Scholar
Suyu, S. H. & Halkola, A. 2010, The halos of satellite galaxies: the companion of the massive elliptical lens SL2S J08544-0121. A&A, 524, A94.Google Scholar
Suyu, S. H., Hensel, S. W., McKean, J. P., et al. 2012, Disentangling Baryons and Dark Matter in the Spiral Gravitational Lens B1933+503. ApJ, 750(1), 10.CrossRefGoogle Scholar
Tanaka, M., Wong, K. C., More, A., et al. 2016, A Spectroscopically Confirmed Double Source Plane Lens System in the Hyper Suprime-Cam Subaru Strategic Program. ApJL, 826(2), L19.CrossRefGoogle Scholar
Treu, T. 2010, Strong Lensing by Galaxies. ARA&A, 48, 87125.Google Scholar
Tu, H., Gavazzi, R., Limousin, M., et al. 2009, The mass profile of early-type galaxies in overdense environments: the case of the double source-plane gravitational lens SL2SJ02176-0513. A&A, 501(2), 475484.Google Scholar
Vegetti, S., Lagattuta, D. J., McKean, J. P., et al. 2012, Gravitational detection of a low-mass dark satellite galaxy at cosmological distance. Nature, 481(7381), 341343.CrossRefGoogle ScholarPubMed
Wang, H., Cañameras, R., Caminha, G. B., et al. 2022, Constraining the multi-scale dark-matter distribution in CASSOWARY 31 with strong gravitational lensing and stellar dynamics. arXiv e-prints, arXiv:2203.13759.Google Scholar
Zitrin, A., Rosati, P., Nonino, M., et al. 2012, CLASH: New Multiple Images Constraining the Inner Mass Profile of MACS J1206.2-0847. ApJ, 749(2), 97.CrossRefGoogle Scholar