We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Star clusters are often born as star-cluster systems, which include several stellar clumps. Such star-cluster complexes could have formed from turbulent molecular clouds. Since Gaia Data Release 2 provided us high quality velocity data of individual stars in known star-cluster complexes, we now can compare the velocity structures of the observed star-cluster complexes with simulated ones. We performed a series of N-body simulations for the formation of star-cluster complexes starting from turbulent molecular clouds. We measured the inter-cluster velocity dispersions of our simulated star-cluster complexes and compared them with the Carina region and NGC 2264. We found that the Carina region and NGC 2264 formed from molecular clouds with a mass of ∼4 × 105M⊙ and ∼4 × 104M⊙, respectively. In our simulations, we also found that the maximum cluster mass (Mc,max) in the complex follows ${M_{{\rm{c}},{\rm{max}}}} = 0.{\rm{2}}0M_g^{0.76}$, where Mg is the initial gas mass.
We present a new approach to understanding star-to-star helium abundance variations within globular clusters. We begin with detailed radiation hydrodynamics simulations of cluster formation within giant molecular clouds, and investigate the conditions under which multiple populations could be created. Chemical enrichment occurs dynamically as the cluster is assembled. We test two extreme mechanisms for injection of enriched gas within the clusters, and find that realistic multiple populations can be formed in both mechanisms. The stochastic cluster formation histories are dictated by the inherent randomness of the timing and location of the formation of small clusters, which rapidly merge to build up the larger cluster, in combination with continual accretion of gas from the cloud. These cluster formation histories naturally produce a diversity of abundance patterns across the massive cluster population. We conclude that multiple populations are a natural outcome of the typical mode of star cluster formation.
We summarise recent results from analysis of APOGEE/Gaia data for stellar populations in the Galactic halo, disk, and bulge, leading to constraints on the contribution of dwarf galaxies and globular clusters to the stellar content of the Milky Way halo. Intepretation of the extant data in light of cosmological numerical simulations suggests that the Milky Way has been subject to an unusually intense accretion history at z ≳ 1.5.
We present a model for hydrodynamic + N-body simulations of star cluster formation and evolution using AMUSE. Our model includes gas dynamics, star formation in regions of dense gas, stellar evolution and a galactic tidal spiral potential, thus incorporating most of the processes that play a role in the evolution of star clusters.
We test our model on initial conditions of two colliding molecular clouds as well as a section of a spiral arm from a previous galaxy simulation.
Recent analyses of Lee et al. (2018, 2019) have confirmed that Galactic bulge consists of stellar populations originated from Milky Way globular clusters (MWGCs). Motivated by this, here we present the evolutionary population synthesis (EPS) for the Galactic bulge and early-type galaxies (ETGs) with the realistic treatment of individual variations in light elements observed in the MWGCs. We have utilized our model with GC-origin populations to explain the CN spread observed in ETGs, and the results show remarkable matches with the observations. We further employ our model to estimate the age of ETGs, which are considered as good analogs for the MW bulge. We find that, without the effect of our new treatments, EPS models will almost always underestimate the true age of ETGs. Our analysis indicates that the EPS with GC-origin populations is an essential constraint in determining the ETG formation epoch and is closely related to understanding the evolution of the Universe.
We have been investigating populations of cataclysmic variables (CVs) in a set of more than 300 globular cluster (GC) models evolved with themoccacode.[-120pt] One of the main questions we have intended to answer is whether most CVs in GCs are dynamically formed or not. Contrary to what has been argued for a long time, we found that dynamical destruction of primordial CV progenitors is much stronger in GCs than dynamical formation of CVs. In particular, we found that, on average, the detectable CV population is predominantly composed of CVs formed via a typical common envelope phase (≳70 per cent). However, core-collapsed models tend to have higher fractions of bright CVs than non-core-collapsed ones, which suggests then that the formation of CVs is indeed slightly favoured through strong dynamical interactions in core-collapsed GCs, due to the high stellar densities in their cores.
We determined zirconium abundance in the atmospheres of 327 red giant branch (RGB) stars in the globular cluster 47 Tuc. The 1D LTE abundances were obtained from the archival VLT GIRAFFE spectra, using 1D hydrostaticATLAS9 stellar model atmospheres and synthetic Zr I line profiles computed with theSYNTHE package. The average zirconium abundance determined in the sample of RGB stars, 〈[Zr/Fe]〉 = +0.38 ± 0.12, agrees well with zirconium abundances obtained at this metallicity in the Galactic field stars, as well as with those observed in other Galactic globular clusters.
This contribution gives an update on on-going efforts to characterise the detailed chemical abundances of Local Group globular clusters (GCs) from integrated-light spectroscopy. Observations of a sample of 20 GCs so far, located primarily within dwarf galaxies, show that at low metallicities the [α/Fe] ratios are generally indistinguishable from those in Milky Way GCs. However, the “knee” above which [α/Fe] decreases towards Solar-scaled values occurs at lower metallicities in the dwarfs, implying that GCs follow the same trends seen in field stars. Efforts are underway to establish NLTE corrections for integrated-light abundance measurements, and preliminary results for Mn are discussed.
he study of the kinematics of globular clusters (GCs) offers the possibility of unveiling their long term evolution and uncovering their yet unknown formation mechanism. Gaia DR2 has strongly revitalized this field and enabled the exploration of the 6D phase-space properties of Milky Way GCs, thanks to precision astrometry. However, to fully leverage on the power of precision astrometry, a thorough investigations of the data is required. In this contribution, we show that the study of the mean radial proper motion profiles of GCs offers an ideal benchmark to assess the presence of systematics in crowded fields. Our work demonstrates that systematics in Gaia DR2 for the closest 14 GCs are below the random measurement errors, reaching a precision of ∼0.015 mas yr−1 for mean proper motion measurements. Finally, through the analysis of the tangential component of proper motions, we report the detection of internal rotation in a sample of ∼50 GCs, and outline the implications of the presence of angular momentum for the formation mechanism of proto-GC. This result gives the first taste of the unparalleled power of Gaia DR2 for GCs science, in preparation for the subsequent data releases.
It has been a long-standing open question why observed globular cluster (GC) populations of different metallicities differ in their ages and spatial distributions, with metal-poor GCs being the older and radially more extended of the two. We use the suite of 25 Milky Way-mass cosmological zoom-in simulations from the E-MOSAICS project, which self-consistently model the formation and evolution of stellar clusters and their host galaxies, to understand the properties of observed GC populations. We find that the different ages and spatial distributions of metal-poor and metal-rich GCs are the result of regular cluster formation at high redshift in the context of hierarchical galaxy assembly. We also find that metallicity on its own is not a good tracer of accretion, and other properties, such as kinematics, need to be considered.
In a series of three papers, we introduced a novel cluster formation model that describes the formation, growth, and disruption of star clusters in high-resolution cosmological simulations. We tested this model on a Milky Way-sized galaxy and found that various properties of young massive clusters, such as the mass function and formation efficiency, are consistent with observations in the local universe. Interestingly, most massive clusters – globular cluster candidates – are preferentially formed during major merger events. We follow the dynamical evolution of clusters in the galactic tidal field. Due to tidal disruption, the cluster mass function evolves from initial power law to a peaked shape. The surviving clusters at z = 0 show a broad range of metallicity [Fe/H] from -3 to -0.5. A robust prediction of the model is the age–metallicity relation, in which metal-rich clusters are systematically younger than metal-poor clusters by up to 3 Gyr.
Recent investigations of multiple stellar populations in globular clusters (GCs) suggest that the horizontal-branch (HB) morphology and mean period of type ab RR Lyrae variables are mostly sensitive to helium abundance, while the star formation timescale has the greatest effect on our chemical evolution model constructed to reproduce the Na-O anti-correlation of GCs. Therefore, by combining the results from synthetic HB model with those from chemical evolution model, we could put better constraints on star formation history and chemical evolution in GCs with multiple populations. From such efforts made for four GCs, M4, M5, M15, and M80, we find that consistent results can be obtained from these two independent models.
We have used the Hubble Space Telescope (HST) observations to measure proper motion of the globular cluster NGC 6656 (M22) with respect to the background bulge stars and its internal velocity dispersion profile. Based on the proper motion of the clusters, its space velocity and orbit are also calculated. The central velocity dispersion in radial and tangential components of the internal motion of cluster stars is 16.99 km s−1. We derive the mass-to-light ratio M/LV∼3.3 ± 0.2 which is relatively higher than the previous works.
Globular clusters are collisional systems, meaning that the stars inside them interact on timescales much shorter than the age of the Universe. These frequent interactions transfer energy between stars and set up observable trends that tell the story of a cluster’s evolution. This contribution focuses on what we can learn by studying velocity anisotropy and energy equipartition in globular clusters with Hubble Space Telescope proper motions.
On observational grounds we now know a huge amount about the characteristics of massive star clusters in galaxies of all types, from the smallest dwarfs to the most massive giants and even into the Intracluster Medium. The old globular clusters (GCs) in particular exhibit a high degree of uniformity across all these environments in their physical properties including scale size, luminosity distribution, metallicity distribution, and age. As survivors of a long period of dynamical evolution, they are “unusual, but not special” among star clusters.
The past few years have seen major advances in theoretical modelling that are starting to reveal how these massive star clusters formed in the early stages of galaxy evolution. Several suites of models point to their emergence in GMCs (Giant Molecular Clouds), which provide the turbulent big reservoirs of gas within which star clusters can be built. At cluster masses ∼105M⊙ and above, clusters form hierarchically through a nearly equal combination of direct gas accretion, and mergers with smaller clusters scattered throughout the GMC. GCs and YMCs (young massive clusters) in this high mass range should therefore be composite systems right from birth. To make such high-mass clusters, host GMCs of ∼107M⊙ are needed, and these are most commonly found in galaxies at redshifts z ≳ 2.
We derive mean proper motions of 15 known Large Magellanic Cloud (LMC) old globular clusters (GCs) from the Gaia DR2 data sets. When these mean proper motions are gathered with existent radial velocities to compose the GCs’ velocity vectors, we found that the projection of the velocity vectors onto the LMC plane and those perpendicular to it tell us about two distinct kinematical GC populations. Such a distinction becomes clear if the GCs are split at a perpendicular velocity of 10 km/s (absolute value). The two different kinematics groups also exhibit different spatial distributions. Those with smaller vertical velocities are part of the LMC disk, while those with larger values are closely distributed like a spheroidal component. Since GCs in both kinematic-structural components share similar ages and metallicities, we speculate with the possibility that their origins could have occurred through a fast collapse that formed halo and disk concurrently.
The photometric properties that we could observe for Extra-Galactic Globular Clusters (EGGCs) are the integrated light of the system and for nearby EGGCs it also is possible to measure both half-light radii and the color spatial distribution, e.g. for areas smaller and larger than the half-light radius. No information about the internal dynamical state of the system could be directly obtained from observations. On the other hand, simulations of Globular Clusters (GCs) can provide detailed information about the dynamical evolution of the system.
We present a preliminary study of EGGCs’ photometric properties for different dynamical evolutionary stages. We apply this study to 12Gyr old GCs simulated as part of the MOCCA Survey Database. We determine the magnitudes in different bands from their projected snapshots using the Flexible Stellar Population Synthesis (FSPS) code and we measure the half-light radii from the surface brightness.
The features and make up of the population of X-ray sources in Galactic star clusters reflect the properties of the underlying stellar environment. Cluster age, mass, stellar encounter rate, binary frequency, metallicity, and maybe other properties as well, determine to what extent we can expect a contribution to the cluster X-ray emission from low-mass X-ray binaries, millisecond pulsars, cataclysmic variables, and magnetically active binaries. Sensitive X-ray observations withXMM-Newton and certainlyChandra have yielded new insights into the nature of individual sources and the effects of dynamical encounters. They have also provided a new perspective on the collective X-ray properties of clusters, in which the X-ray emissivities of globular clusters and old open clusters can be compared to each other and to those of other environments. I will review our current understanding of cluster X-ray sources, focusing on star clusters older than about 1 Gyr, illustrated with recent results.
Gaia DR2 catalog provides a unique possibility to study the three-dimensional structure and the three-dimensional velocity field of the nearby open clusters. We can either select stars with a maximum membership probability and the most accurate values for the proper motions, parallaxes, and the radial velocities, or study these clusters statistically using overwhelmingly large areas of sky of tens by tens degrees. The second approach allows us to reveal the extensive outer parts of the clusters - a corona and the tidal tails and to study the luminosity and mass functions of these clusters. We present the first results of the investigation of several nearby open clusters, including Pleiades, Alpha Persei, Ruprecht 147.