Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T13:27:34.014Z Has data issue: false hasContentIssue false

The building blocks of the Milky Way halo using APOGEE and Gaia or Is the Galaxy a typical galaxy?

Published online by Cambridge University Press:  11 March 2020

Ricardo P. Schiavon
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, Liverpool, L3 5RF, UK email: [email protected]
J. Ted Mackereth
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, Liverpool, L3 5RF, UK email: [email protected] School of Physics and Astronomy, University of Birmingham, Birmingham, UK
Joel Pfeffer
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, Liverpool, L3 5RF, UK email: [email protected]
Rob A. Crain
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, Liverpool, L3 5RF, UK email: [email protected]
Jo Bovy
Affiliation:
Dept. of Astronomy and Astrophysics, University of Toronto, Toronto, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We summarise recent results from analysis of APOGEE/Gaia data for stellar populations in the Galactic halo, disk, and bulge, leading to constraints on the contribution of dwarf galaxies and globular clusters to the stellar content of the Milky Way halo. Intepretation of the extant data in light of cosmological numerical simulations suggests that the Milky Way has been subject to an unusually intense accretion history at z ≳ 1.5.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Andrews, B. H., Weinberg, D. H., Schönrich, R., & Johnson, J. A. 2017, ApJ, 835, 224CrossRefGoogle Scholar
Bastian, M. & Lardo, C. 2018, ARA&A, 56, 83CrossRefGoogle Scholar
Belokurov, V., Erkal, D., Evans, N. W., Koposov, S. E., & Deason, A. J., 2018, MNRAS, 478, 611CrossRefGoogle Scholar
Bensby, T., Feltzing, S., & Oey, M. S. 2014, A&A, 562, 71Google Scholar
Bovy, J., Rix, H.-W., Liu, C., Beers, T., & Lee, Y. S. 2012, ApJ, 753, 148CrossRefGoogle Scholar
Chiappini, C. 2009, in Andersen, J., Bland-Hawthorn, J., Nordström, B., eds, Proc. IAU Symp. 254, The Galaxy Disk in Cosmological Context. Kluwer, Dordrecht, p. 191Google Scholar
Clarke, A. J., Debattista, V. P., Nidever, D. L., et al. 2019, MNRAS, 484, 3476CrossRefGoogle Scholar
Crain, R. A.et al. 2015, MNRAS, 450, 1937CrossRefGoogle Scholar
Dalton, G. 2016, Multi-object Spectroscopy in the Next Decade: Big Questions, Large Surveys, and Wide Fields, 97Google Scholar
de Jong, R. S.et al. 2019, Messenger, 175, 3Google Scholar
Eggen, O. J., Lynden Bell, D., & Sandage, A. R., 1962, ApJ, 136, 748CrossRefGoogle Scholar
Collaboration, Gaiaet al. 2018, A&A, 616, A1Google Scholar
Hayden, M. R.et al. 2015, ApJ, 808, 132CrossRefGoogle Scholar
Haywood, M.et al. 2018, ApJ, 863, 113CrossRefGoogle Scholar
Helmi, A.et al. 2018, Natur, 563, 85CrossRefGoogle Scholar
Hudson, M. J., Harris, G. L., & Harris, W. E. 2014, ApJ, 787, L5CrossRefGoogle Scholar
Kruijssen, J. M. D. & Portegies Zwart, S. F. 2009, ApJ, 698, L158CrossRefGoogle Scholar
Kruijssen, J. M. D. 2015, MNRAS, 454, 1658CrossRefGoogle Scholar
Kruijssen, J. M. D., Pfeffer, J. L., Reina-Campos, M., Crain, R. A., & Bastian, N. 2018, 486, 3180CrossRefGoogle Scholar
Mackereth, J. T.et al. 2018, 477, 5072CrossRefGoogle Scholar
Mackereth, J. T.et al. 2019, MNRAS, 482, 3426CrossRefGoogle Scholar
Majewski, S. R.et al. 2017, AJ, 154, 94CrossRefGoogle Scholar
Myeong, G. C. 2018, MNRAS, 475, 1537CrossRefGoogle Scholar
Pfeffer, J.et al. 2018, MNRAS, 475, 4309CrossRefGoogle Scholar
Renzini, A.et al. 2015, MNRAS, 454, 4197CrossRefGoogle Scholar
Schaye, J.et al. 2015, MNRAS, 446, 521CrossRefGoogle Scholar
Schiavon, R. P.et al. 2017, MNRAS, 465, 501CrossRefGoogle Scholar
Schönrich, R. & Binney, J. 2009, MNRAS, 396, 203CrossRefGoogle Scholar
Shetrone, M.et al. 2003, AJ, 125, 684CrossRefGoogle Scholar
Watkins, L. L.et al. 2019, ApJ, 873, 118CrossRefGoogle Scholar