Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T21:00:03.915Z Has data issue: false hasContentIssue false

Chemical composition of globular clusters in dwarf galaxies

Published online by Cambridge University Press:  11 March 2020

Søren S. Larsen*
Affiliation:
Department of Astrophysics/IMAPP, Radboud University, Postbus 9010, NL-6500GL, Nijmegen, the Netherlands email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This contribution gives an update on on-going efforts to characterise the detailed chemical abundances of Local Group globular clusters (GCs) from integrated-light spectroscopy. Observations of a sample of 20 GCs so far, located primarily within dwarf galaxies, show that at low metallicities the [α/Fe] ratios are generally indistinguishable from those in Milky Way GCs. However, the “knee” above which [α/Fe] decreases towards Solar-scaled values occurs at lower metallicities in the dwarfs, implying that GCs follow the same trends seen in field stars. Efforts are underway to establish NLTE corrections for integrated-light abundance measurements, and preliminary results for Mn are discussed.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bergemann, M. & Gehren, T. 2008, A&A 492, 823Google Scholar
Brodie, J. P. & Huchra, J. P. 1990, ApJ 362, 503CrossRefGoogle Scholar
Colucci, J. E., Bernstein, R. A., & McWilliam, A. 2017, ApJ 834, 105CrossRefGoogle Scholar
Eitner, P., Bergemann, M., & Larsen, S. S. 2019, A&A 627, A40Google Scholar
Georgiev, I. Y., Puzia, T. H., Goudfrooij, P., & Hilker, M. 2010, MNRAS 406, 1967Google Scholar
Gustafsson, B., Edvardsson, B., Eriksson, K., et al. 2008, A&A 486, 951Google Scholar
Harris, W. E., Harris, G. L. H., & Alessi, M. 2013, ApJ 772, 82CrossRefGoogle Scholar
Hernandez, S., Larsen, S. S., Trager, S., et al. 2018, MNRAS 476, 5189CrossRefGoogle Scholar
Hinkle, K. & Wallace, K. 2005, Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis in honor of David L. Lambert, ASP Conf. Ser. 336, 321Google Scholar
Ishigaki, M. N., Aoki, W., & Chiba, M. 2013, ApJ 771, 67CrossRefGoogle Scholar
Kurucz, R. L. 2005, Mem. S.A.It. Suppl. 8, 14Google Scholar
Larsen, S. S., Brodie, J. P., & Strader, J. 2017, A&A 601, A96Google Scholar
Larsen, S. S., Brodie, J. P., Wasserman, A., & Strader, J. 2018a, A&A 613, A56Google Scholar
Larsen, S. S., Pugliese, G., Brodie, J. P. 2018b, A&A 617, A119Google Scholar
McWilliam, A. & Bernstein, R. A. 2008, ApJ 684, 326CrossRefGoogle Scholar
Miller, B. W. & Lotz, J. M. 2008, ApJ 670, 1074CrossRefGoogle Scholar
Nissen, P. E., Chen, Y. Q., Schuster, W. J., & Zhao, G. 2000, A&A 353, 722Google Scholar
Plez, B. 2012, Astrophysics Source Code Library, record 1205.004Google Scholar
Sakari, C. M., Shetrone, M., Venn, K., et al. 2013, MNRAS 434, 358CrossRefGoogle Scholar
Sbordone, L., Bonifacio, P., Castelli, F., & Kurucz, R. L. 2004, Mem. S.A.It. Suppl. 5, 93Google Scholar
Tolstoy, E., Hill, V., & Tosi, M. 2009, ARA&A 47, 371CrossRefGoogle Scholar
Venn, K. A., Irwin, M., Shetrone, M. D., et al. 2004, AJ 128, 1177CrossRefGoogle Scholar
Worthey, G., Faber, S. M., Gonzalez, J. J., & Burstein, D. 1994, ApJS 94, 687CrossRefGoogle Scholar