We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Reionization represents an important epoch in the history in the Universe, when the first stars and galaxies gradually ionize the neutral hydrogen in the intergalactic medium (IGM). Understanding the nature of the ionizing sources, the associated ionization of the IGM, and its impact on subsequent structure formation and galaxy evolution by means of radiative feedback effects, represent key outstanding questions in current astrophysics. High-redshift galaxy observations and simulations have significantly extended our knowledge on the nature of high-redshift galaxies. However, essential properties such as the escape fraction of ionizing photons from galaxies into the IGM and their dependency on galactic properties remain essentially unknown, but determine significantly the distribution and time evolution of the ionized regions during reionization. Analyzing this ionization topology by means of the neutral hydrogen sensitive 21cm signal with radio interferometers such as SKA offers a complementary and unique opportunity to determine the nature of these first galaxies. I will show results from a self-consistent semi-numerical model of galaxy evolution and reionization, and discuss the potential of inferring galactic properties with the 21cm signal as well as the impact of reionization on the high-redshift galaxy population and its evolution.
We present new results on the Galactic bar/bulge transverse velocity structure using Gaia and the VISTA Variables in Via Lactea (VVV) survey. Gaia is complemented in high extinction regions by the multi-epoch infrared VVV observations for which derived relative proper motions can be tied to Gaia’s absolute frame. We extract kinematic maps (both 2D and 3D) of the Galactic bar/bulge, from which we measure the pattern speed of the bar using a novel technique. We focus on the evidence of an X-shaped bulge from the kinematic maps.
The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) is a state-of-the-art, thermally stabilized, fiber-fed, high-resolution spectrograph for the Large Binocular Telescope (LBT) at Mt. Graham, Arizona. During daytime the instrument is fed with sunlight from the 10-millimeter aperture, fully automated, binocular Solar Disk-Integrated (SDI) telescope. The observed Sun-as-a-star spectra contain a multitude of photospheric and chromospheric spectral lines in the wavelength ranges 4200–4800 Å and 5300–6300 Å. One of the advantages of PEPSI is that solar spectra are recorded in the exactly same manner as nighttime targets. Thus, solar and stellar spectra can be directly compared. PEPSI/SDI recorded 116 Sun-as-a-star spectra during the 2017 August 21 solar eclipse. The observed maximum obscuration was 61.6%. The spectra were taken with a spectral resolution of ≈ 250000 and an exposure time of 0.3 s. The high-spectral resolution facilitates detecting subtle changes in the spectra while the Moon passes the solar disk. Sun-as-a-star spectra are affected by changing contributions due to limb darkening and solar differential rotation, and to a lesser extend by supergranular velocity pattern and the presence of active regions on the solar surface. The goal of this study is to investigate the temporal evolution of the chromospheric Na D doublet during the eclipse and to compare observations with synthetic line profiles computed with the state-of-the-art Bifrost code.
Lyman-alpha emitting (LAE) galaxies are thought to be predominantly responsible for the re-ionisation of the Universe and are, as such, one of the most studied star-forming galaxy populations. Current optical and narrow-band studies are limited by the angular resolution of the observations and the considerable investment in telescope time. Strong gravitational lensing is an extremely powerful method that can be used to overcome these limitations. In my talk I will present a study on the first homogeneous sample of 17 lensed Lyman-alpha emitters at redshift 2 < z < 3. By taking advantage of the lensing magnification, I was able to access the detailed structure of this high redshift star-forming galaxies, finding that they have radii ranging from 0.2 to 1.8 kpc and have a complex and clumpy morphology, with a median ellipticity of 0.49. This is consistent with disk-like structures of star-formation, which would rule out models where the Lyman-alpha emission is only seen perpendicular to the disk, and favours those clumpy models for the escape lines of sight for Lyman-alpha photons. We also find that the star formation rates range from 0.3 to 8.5 Mȯ/yr and that these galaxies tend to be very compact. The lower limit to their intrinsic size is about a factor of two smaller than that found for non-lensed LAEs, which highlights the power of gravitational lensing and sophisticated lens modelling techniques for resolving such objects in the high redshift Universe.
Jellyfish galaxies are the most extreme examples of ram pressure stripping (RPS). They represent an important path in the morphological change and quenching in galaxy clusters, however they are still not well characterised morphologically and finding them is a complex task based mainly on visual inspection. We present a study on the properties of a large sample of jellyfish candidates in the multi-cluster system A901/2. We find evidence that the multi-cluster is triggering RPS events in preferential regions in the system and that these galaxies have enhanced specific star formation rates. We also use the software Morfometryka in order to analyse the unique morphometric features in jellyfish galaxies providing a better comprehension of their physical state and future. This can help unravel the physical processes behind such extreme morphologies as well as possibly automatising the search for jellyfish galaxy candidates in large surveys in the next era of instruments.
Recent advancements in astrometry and in cosmological models of dark matter halo growth have significantly changed our understanding of the dynamics of the Local Group. The most dramatic changes owe to a new picture of the structure and dynamics of the Milky Way’s most massive satellite galaxy, the Large Magellanic Cloud (LMC), which is most likely on its first passage about the Milky Way and ten times larger in mass than previously assumed. The LMC’s orbit through the Milky Way’s dark matter and stellar halo will leave characteristic signatures in both density and kinematics. Furthermore, the gravitational perturbations produced by both direct tidal forcing from the LMC and the response of the halo to its passage will together cause significant perturbations to the orbits of tracers of the Milky Way’s dark matter distribution. We advocate for the use of basis field expansion methods to fully capture and quantify these effects.
We have examined the relationship between star formation and polycyclic aromatic hydrocarbons (PAHs) by fitting the spectral energy distributions (SED) of AKARI selected galaxies. PAHs are excited by the ultraviolet (UV) photons of young stars and can trace star formation in galaxies, but they are disassociated by the strong UV radiation in starbursts. AKARI covered the mid-infrared, where the PAHs emit their radiation, with a high density of photometric bands. These observations allow us to estimate the star formation rate and the PAH mass fraction of the dust in galaxies. In the future the James Webb Space Telescope (JWST) will also make measurements in this wavelength range. This research can therefore be considered as a pathfinder to similar studies that will come later from JWST observations.
I will present evidence of QSO-driven outflows in the early Universe, resulting from the stacking analysis of ALMA observations of the [CII] emission line for a sample of 50 QSOs at z ∼ 5 – 7. The high sensitivity reached by our analysis allowed us to assess that very broad wings are on average present in the [CII] profile, and extend beyond velocities of 1000 km/s in systems with low and high SFR. Such wings are therefore tracing QSO-driven [CII] outflows, with associated mass outflow rates of 100 – 200Mȯ / yr. I will discuss how these outflows relate to those observed in lower-z AGNs and give an estimate of their spatial extent. Furthermore, I will focus on the high-resolution ALMA observation of a hyper luminous QSO at z ∼ 4.5, revealing an exceptional overdensity with multiple companions as close as 2 kpc. These crowded surroundings, and the QSO host galaxy itself, are forming stars at a very high rate (hundreds of Mȯ / yr), suggesting that a significant fraction of the stellar mass assembly at early epochs might have taken place in the companions. I will discuss how the BH and host-galaxy masses are growing in this multi- source system, which likely represents the cradle of what would be a giant galaxy at z = 0.
Cosmological simulations predict that early-type galaxies (ETGs) are the results of extended mass accretion histories. The latter are characterized by different numbers of mergers, mergers’ mass ratios and gas fractions, and timing. Depending on the sequence and nature of these mergers that follow the first phase of the in-situ star formation, these accretion histories may lead to ETGs that have low or high mass halos, and that rotate fast or slow. Since the stellar halos maintain the fossil records of the events that led to their formation, a discontinuity may be in place between the inner regions of ETGs and their outer halos, because the time required for the halos’ stars to exchange their energies and momenta is very long compared with the age of these systems. Exquisite deep photometry and extended spectroscopy for significant samples of ETGs are then used to quantify the occurrence and significance of such a transition in the galaxies’ structural and kinematical parameters. Once this transition radius is measured, its dependency with the effective radius of the galaxies’ light distribution and total stellar masses can be investigated. Such correlations can then be compared with the predictions of accreted, i.e. ex-situ vs. in-situ components from cosmological simulations to validate such models.
Geomagnetic storms can be modeled as stochastic processes with log-normal probability distribution function over their minimum Dst index value measured during the main phase of each event. Considering a time series of geomagnetic storm events between 1957 and 2019 we have analyzed the probability of occurrence of small, moderate, strong and extreme events. The data were separated according to solar cycle (SC) and solar cycle phases and fitted through maximum likelihood method in order to compare rates of occurrence of the last Solar Cycle (SC24) with previous ones. Our results show that for Dst < – 100 nT events in SC24 are similar to those in SC20, obtaining ⁓42 vs 21 median rate storms per cycle with 95% confidence intervals using Bootstrap Method. As SC24 has been the least active solar cycle in over 200 years, we conclude that this method tends to overestimate geomagnetic storms occurrence rates even for small events.
Nearly two thirds of spiral galaxies are either strongly or weakly barred, yet a significant fraction of disc galaxies do not have a bar. Now we understand that there are at least three ways of making bars, i.e., bar instability, tidal interaction, and secular bar growth by orbit trapping of a seed bar. However, the reverse problem of avoiding bar formation in unbarred galaxies may be more challenging than we thought. It is shocking that we still do not understand how the bar instability is avoided in real galaxies such as M33, and this puzzle may be central to the outstanding issue of what determines the distribution of bar strengths in galaxies.
Small-JASMINE will provide astrometric data with high precisions in a near infrared band for stars in the Galactic nuclear bulge and other specific targets. The primary scientific objective is to carry out the Galactic Center Archeology by exploring the Galactic nuclear bulge that leads to the elucidation of the Galactic structures and the evolution of the supermassive black hole at the center. Small-JASMINE has been selected as the unique candidate for the competitive 3rd M-class science satellite mission by ISAS/JAXA. The launch date is mid-2020s.
The existence intermediate mass black holes (IMBH, MBH ≲ 106M⊙) at the centers low-mass galaxies with stellar masses between (1–10)×10M⊙ are key to constraining the origin of black hole (BH) seeds and understanding the physics deriving the co-evolution of central BHs and their host galaxies. However, finding and weighing IMBH is challenging. Here, we present the first observational evidence for such IMBHs at the centers of the five nearest early-type galaxies (D < 3.5 Mpc, ETGs) revealed by adaptive optics kinematics from Gemini and VLT and high-resolution HST spectroscopy. We find that all five galaxies appear to host IMBHs with four of the five having masses below 1 million M⊙ and the lowest mass BH being only ∼7,000 M⊙. This work provides a first glimpse of the demographics of IMBHs in this galaxy mass range and at velocity dispersions < 70 km/s, and thus provides an important extension to the bulge mass and galaxy dispersion scaling relations. The ubiquity of central BHs in these galaxies provides a unique constraint on BH seed formation scenarios, favoring a formation mechanism that produces an abundance of low-mass seed BHs.
Gravitational lensing from galaxy clusters has great potential for deriving the prevalence and physical properties of ultra-faint galaxies at early times, with recent very impressive results from the Hubble Frontier Fields program. Important issues in deriving the most accurate results are accurate constraints on source sizes and a robust treatment of uncertainties in the magnification models. Using > 3300 z = 2 – 10 galaxies behind the 6 Hubble Frontier Fields clusters and a forwards modeling approach, I describe the efforts of my collaborators and me to map out the galaxy luminosity functions at ∼ − 13 mag from z ∼ 9 to z ∼ 2, i.e, a factor of 1000 below Lå and to the typical luminosity of galaxies suspected to drive cosmic reionization. Additionally, I discuss the constraints we can obtain on the properties of faint sources, in particular their stellar masses, mass-to-light ratios, colors, and stellar population ages. I conclude with a prospective on using cluster lenses to study the distant universe with the James Webb Space Telescope.
The Bulge Asymmetries and Dynamical Evolution (BAaDE) survey aims to use circumstellar SiO maser line-of-sight velocities as probes for the Galactic gravitational potential and dynamical structure. The SiO masers are detected at a high rate in specific color-selected MSX infrared sources. Furthermore, the SiO maser properties and line ratios, in combination with infrared spectral energy distributions and location in the Galaxy, will statistically yield detailed information on population and evolution of low- to intermediate-mass evolved stars in the Galaxy.
The venerable problem of what causes the spiral features in disk galaxies is nearing a solution. In previous work, we have shown that transient spirals in simulations result from the superposition of a few coherent waves that have many properties of modes. The new achievement presented here is a clear demonstration that the evolution of one unstable mode leads to scattering at Lindblad resonances, and the depopulation of phase space at such resonances creates a “groove” that is the cause of a new unstable mode. Thus we now understand that the cause of spiral patterns in simulations is a recurrent cycle of groove modes. In other work, we have used Gaia DR2 data, converted to action-angle variables, to identify resonant scattering features in the Solar neighborhood that closely resemble those seen in the simulations, suggesting that the mechanism that causes spirals in simulations may also be at work in the Milky Way.
We present a new method to combine cold gas kinematics with the stellar kinematics modelled with the Schwarzschild orbit-superposition technique, and its application to the lenticular galaxy NGC 2974. The combination of stellar and cold gas kinematics significantly improves the constraints on the measured dark matter profile: assuming a generalised NFW halo profile, we find a cuspy inner halo slope for NGC 2974.
We present a preliminary analysis of the Strömgren uvby photometry of the magnetic CP stars obtained using the Four College Automated Photometric Telescope for its 21.5 years of operation ending in Fall 2012. We summarize the photometry for all the FCAPT mCP stars that have been published to date. We do not find any significant correlation between the amplitudes of variation in the uvby filters and the periods. A small number of stars show anomalous behaviour of the v filter which will be discussed in a future study.
The inference of the Milky Way halo mass requires modelling the phase space structure of dynamical tracers, with different tracers following different models and having different levels of sensitivity to the halo mass. For steady-state models, deviations from steady-state in the tracer distribution lead to an irreducible stochastic bias. This bias is small for satellite galaxies and dark matter particles, but as large as a factor of 2 for halo stars. This is consistent with the picture that satellite galaxies closely trace the underlying phase space distribution of dark matter particles, while halo stars are less phase-mixed. As a result, the use of only ~100 satellite galaxies can achieve a significantly higher accuracy than that achievable with a much larger sample of halo stars.
Solar coronal dimmings have been observed extensively in the past two decades and are believed to have close association with coronal mass ejections (CMEs). Recent study found that coronal dimming is the only signature that could differentiate powerful flares that have CMEs from those that do not. Therefore, dimming might be one of the best candidates to observe the stellar CMEs on distant Sun-like stars. In this study, we investigate the possibility of using coronal dimming as a proxy to diagnose stellar CMEs. By simulating a realistic solar CME event and corresponding coronal dimming using a global magnetohydrodynamics model (AWSoM: Alfvén-wave Solar Model), we first demonstrate the capability of the model to reproduce solar observations. We then extend the model for simulating stellar CMEs by modifying the input magnetic flux density as well as the initial magnetic energy of the CME flux rope. Our result suggests that with improved instrument sensitivity, it is possible to detect the coronal dimming signals induced by the stellar CMEs.