We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The detection and analysis of line emission of the CaII, H(396.8nm) and K(393.3nm) have confirmed the chromospheric activity of some single and binaries stars. This activity is associated to the presence of magnetic fields which in turn are produced by internal convective flows along with stellar rotation producing a long-term photometric cycle length related to the apparition and vanishing of superficial stellar spots. We present a photometric study of stars of the type RS CVn, Rotationally variable Star and BY Dra, that have shown evidence of chromospheric activity. The analysis of these measurements has allowed us to delimit periods of rotation. In addition, we have detected and measured the cycle length in some cases. It allows us to complement previous investigations and in some cases to determine for the first time the presence of a long photometric cycle, contributing to complement the link between rotation and magnetic cycles.
The mass-SFR relation of galaxies encodes information of present and historical star formation in the galaxy population. We expect the intrinsic scatter in the relation to increase to low mass where SFR becomes more stochastic. Measurements at z ‰ 4 from the Hubble Frontier fields have hinted at this (Santini et al., 2017), however, with the added uncertainty of lensing magnification we await JWST to provide robust measurements. Even with data-sets provided by JWST, uncertainties on mass and SFR estimates are often large, potentially covariant and dependent on assumptions used. I will present our method of Bayesian hierarchical modelling of the mass-SFR relation that self-consistently propagates uncertainties on mass and SFR estimates to uncertainties on the mass-SFR relation parameters. I will expose the biases imposed by standard SED-modelling practices, and address to what significance we can measure an increase in intrinsic scatter to low masses with JWST.
Observations of star-forming galaxies in the distant Universe have confirmed the importance of massive stars in shaping galaxy emission and evolution. Distant stellar populations are unresolved, and the limited data available must be interpreted in the context of stellar population models. Understanding these populations, and their evolution with age and heavy element content is key to interpreting processes such as supernovae, cosmic reionization and the chemical enrichment of the Universe. With the upcoming launch of JWST and observations of galaxies within a billion years of the Big Bang, the uncertainties in modelling massive stars - particularly their interactions with binary companions - are becoming increasingly important to our interpretation of the high redshift Universe. In turn, observations of distant stellar populations provide ever stronger tests against which to gauge the success of, and flaws in, current massive star models. Here we briefly review the current status binary stellar population synthesis.
We present an overview of recent key results from the SAMI Galaxy Survey on the build-up of mass and angular momentum in galaxies across morphology and environment. The SAMI Galaxy survey is a multi-object integral field spectroscopic survey and provides a wealth of spatially-resolved, two-dimensional stellar and gas measurements for galaxies of all morphological types, with high-precision due the stable spectral resolution of the AAOmega spectrograph. The sample size of ~3000 galaxies allows for dividing the sample in bins of stellar mass, environment, and star-formation or morphology, whilst maintaining a statistical significant number of galaxies in each bin. By combining imaging, spatially resolved dynamics, and stellar population measurements, our result demonstrate the power of utilising integral field spectroscopy on a large sample of galaxies to further our understanding of physical processes involved in the build-up of stellar mass and angular momentum in galaxies.
We study the minor mergers of galaxies using simulations. For this we use GADGET2 code. We present results of simulations of minor mergers of disc galaxies of mass ratio 1:10. These simulations consist of collisionless as well as hydrodynamical runs including a gaseous component in the galactic disc of primary galaxy. Our goal is to establish the characteristics of discs obtained after the merger.We observe that the primary galaxy discs are not destroyed after the merger. We take different initial conditions for the primary galaxy varying the gas percentage in disc from 0–40 percentage and study the thickness of the disc after the merger. We generally observe that the thickness of the disc increases after the merger for any gas percentage. We also observe that as the gas percentage increases in the disc of initial primary galaxy, the increase in the thickness keeps decreasing.
We review the Schwarzschild orbit-superposition approach and present a new implementation of this method, which can deal with a large class of systems, including rotating barred disk galaxies. We discuss two conceptual problems in this field: the intrinsic degeneracy of determining the potential from line-of-sight kinematics, and the non-uniqueness of deprojection and related biases in potential inference, especially acute for triaxial bars. When applied to mock datasets with known 3d shape, our method correctly recovers the pattern speed and other potential parameters. However, more work is needed to systematically address these two problems for real observational datasets.
We present high-precision light curves of several M- and K-type, active detached eclipsing binaries (DEBs), recorded with 2-minute cadence by the Transiting Exoplanet Survey Satellite (TESS). Analysis of these curves, combined with new and literature radial velocity (RV) data, allows to vastly improve the accuracy and precision of stellar parameters with respect to previous studies of these systems. Results for one previously unpublished DEB are also presented.
Sunspots are the most prominent feature of the solar magnetism in the photosphere. Although they have been widely investigated in the past, their structure remains poorly understood. Indeed, due to limitations in observations and the complexity of the magnetic field estimation at chromospheric heights, the magnetic field structure of sunspot above the photosphere is still uncertain. Improving the present knowledge of sunspot is important in solar and stellar physics, since spot generation is seen not only on the Sun, but also on other solar-type stars. In this regard, we studied a large, isolated sunspot with spectro-polarimeteric measurements that were acquired at the Fe I 6173 nm and Ca II 8542 nm lines by the spectropolarimeter IBIS/DST under excellent seeing conditions lasting more than three hours. Using the Non-LTE inversion code NICOLE, we inverted both line measurements simultaneously, to retrieve the three-dimensional magnetic and thermal structure of the penumbral region from the bottom of the photosphere to the middle chromosphere. Our analysis of data acquired at spectral ranges unexplored in previous studies shows clear spine and intra-spine structure of the penumbral magnetic field at chromopheric heights. Our investigation of the magnetic field gradient in the penumbra along the vertical and azimuthal directions confirms results reported in the literature from analysis of data taken at the spectral region of the He I 1083 nm triplet.
The BAaDE (Bulge Asymmetries and Dynamical Evolution) project is an SiO maser survey of the Galactic Plane. About 19,000 sources have been observed at 43 GHz with the VLA, and the production of spectra for each of these sources is well underway. The primary goal of the project is to collect line-of-sight velocities for all the detected masers in the sample to probe Galactic dynamics. With an expected detection rate of over 60% we should collect over 11,000 velocities to probe the Galactic potential. The survey is also a large sample of infrared sources to explore the different evolved stellar populations within the Milky Way. So far we discern three distinct groups in the BAaDE sample: the main group containing oxygen-rich, evolved stars with a high SiO maser detection rate, a much smaller population of carbon-rich evolved stars, and finally a group of likely young stellar objects with no maser emission. These populations are separated using 2MASS and MSX color-color diagrams, and we find a particularly useful cut between the young and evolved objects using the MSX [D] –[E] color. Identification of these populations will isolate BAaDE’s evolved star sample, and will more tightly define the region in IR color-color diagrams where SiO masers occur yielding a better understanding of these kinematical probes. Using our color-divisions we can also study the distribution of each of the populations within the Galactic Plane.
One of the most important open issues in astronomy is the assembly of galactic disks. Over the last decade this has been addressed with large surveys of the internal kinematics of galaxies spanning the last 10 billion years of the universe. I will discuss recent results from the field that show the kinematic assembly of disk galaxies since a redshift of 2.5, including recent deep 10–30 hour observations by my group with the DEIMOS spectrograph on Keck. These results strongly challenge traditional analytic models of galaxy formation and provide an important benchmark for simulations. Furthermore, I will discuss our plans for extending measurements to higher redshifts with future instruments such as the JWST's NIRSpec IFU and the E-ELT's MOSAIC and HARMONI IFUs. From mock JWST and E-ELT observations of simulated galaxies, we are learning that interpreting these observations of galaxies in the early universe, when merging is frequent, is not necessarily straightforward.
LAMOST has obtained a large number of spectra for K-giant stars whose metallicities are well measured and released in DR5. Combining with the distances, radial velocities and proper motions provided by Gaia DR2, the full position and velocity information has been obtained. Using the Bayesian method we have constrained the rotational velocity of the halo and thick disk components in the local volume within 4 kpc from the Sun. The values of the rotational velocity are and for the halo and disk respectively, with the velocity of LSR assumed to be 232 km s−1. The dispersions of the rotational velocity are and for the two components. What’s more, another hot retrogradely rotating component is discovered.
Stellar surveys and dynamical models have recently led to important progress on understanding the dynamical structure of the Milky Way’s bar and central box/peanut bulge. This talk briefly reviews the density structure of the bulge and bar from star count tomography, the cylindrical rotation of bulge stars, and the measurements of their stellar masses and pattern speed that have been obtained by fitting dynamical models to the combined star count and line-of-sight velocity data. Recent work deriving absolute proper motions throughout the bulge from the VIRAC survey and Gaia has led to a new 3D measurement of the barred bulge kinematics which is expected to greatly improve the dynamical models, and has already confirmed the relatively slow pattern speed (∼40 kms−1 kpc−1) obtained from the previous dynamical and gas-dynamical modelling.
We present spatial orientation of angular momentum vectors of 3038 galaxies in the SDSS supercluster S[202-002+0084] having mean redshift 0.084. The selection effects in the database are removed using random simulation method. The observed distributions of angular momentum vectors of galaxies are compared with expected theoretical distribution using chi-square, auto-correlation and Fourier tests. No preferred alignments of angular momentum vectors of galaxies are noticed in the supercluster S[202-001+0084], supporting hierarchy model.
Submillimeter galaxies at redshift z⩾1 show a pronounced [CII]/FIR deficit down to sub-kpc scales; however, the physical origin of this deficit remains poorly understood. We use resolved ALMA observations of the [CII], FIR and CO(3–2) emission in two z = 3 SMGs to distinguish between the different proposed scenarios; the thermal saturation of the [CII] emission is the most likely explanation.
The number of quasars known within the first billion years of the universe (z > 6) has increased significantly over the last five years. Many of these recently discovered quasars are ideal targets for observatories in the southern hemisphere such as ALMA. I will review the current status of the highest-redshift quasars and their environments, highlighting main achievements and limitations. I will then discuss how synergistic JWST/ALMA observations will shed light onto the properties and formation of some of the most extreme environments in the early universe.
While most of the exoplanets have been found orbiting around solar-type stars, low-mass stars have recently been recognized as ideal exo-life laboratory. Currently, stellar activity is one of the limiting factors for the characterization of Earth-twins and for assessing their habitability: understanding the activity of M dwarfs is thus crucial. In this contribution I present the spectroscopic analysis of the quiet early-M dwarfs monitored within the HADES (HArps-n red Dwarf Exoplanet Survey) radial velocity survey. The spectra allow us to analyze simultaneously the Ca ii H&K doublet and the Hydrogen Balmer series, while the intensive follow up gives us a large number of spectra ( 100) for each target. We complement this dataset with ground-based follow-up photometry and archival X-ray data. I present our results on the activity-rotation-stellar parameters and flux-flux relationships, and discuss the correlation of emission fluxes at low activity levels and the evolution timescales of active regions.
A major uncertainty in the determination of the mass profile of the Milky Way using stellar kinematics in the halo is the poorly determined anisotropy parameter, , where σr is the Galactocentric radial velocity dispersion, and σθ and σφ are the tangential components of the velocity dispersion. We have used a sample of over 24,000 Galactic halo K giant and blue horizontal branch stars from the LAMOST stellar spectroscopic survey and SDSS/SEGUE, combined with proper motions from Gaia Data Release 2, to measure β(rgc) over a wide range of Galactocentric distances rgc from 5 to 80 kpc. Kinematic substructures have been carefully removed to reveal the underlying diffuse stellar halo prior to measuring β. We find that orbits are generally radial (β > 0) and β is constant out to distances of about 40 kpc, with a dependence on metallicity of the stars, such that β declines with lower metallicity. Similar behavior is seen in both the K giant and BHB samples.
Recent observations of globular clusters encourage to revise some aspects of the traditional paradigm, in which they were considered to be isotropic in velocity space and non-rotating. However, the theory of collisionless spheroids with some kinematic richness has seldom been studied. We present here a further step in this direction, owing to new results regarding the linear stability of rotating Plummer spheres, with varying anisotropy in velocity space and total amount of angular momentum. We extend the well-known radial orbit instability to rotating systems, and discover a new regime of instability in fast rotating, tangentially anisotropic systems.
Recent observations have successfully detected UV or infrared flux from galaxies at the epoch of reionization. However, the origin of their radiative properties has not been fully understood yet. Combining cosmological hydrodynamic simulations and radiative transfer calculations, we present theoretical predictions of multi-wavelength radiative properties of the first galaxies at z = 6–15. We find that most of the gas and dust are ejected from star-forming regions due to supernova (SN) feedback, which allows UV photons to escape. We show that the peak of SED rapidly shifts between UV and infrared wavelengths on a timescale of 100 Myr due to intermittent star formation and feedback. When dusty gas covers the star-forming regions, the galaxies become bright in the observed-frame sub-millimeter wavelengths. In addition, we find that the escape fraction of ionizing photons also changes between 1–40% at z > 10. The mass fraction of H ii region changes with star formation history, resulting in fluctuations of metal lines and Lyman-α line luminosities. In the starbursting phase of galaxies with a halo mass ∼1011Mȯ (1012Mȯ), the simulated galaxy has L[OIII] ∼ 1042 (1043) erg s−1, which is consistent with the observed star-forming galaxies at z > 7. Our simulations suggest that deep [Cii] observation with ALMA can trace the distribution of neutral gas extending over ∼20 physical kpc. We also find that the luminosity ratio L[OIII]/L[CII] decreases with bolometric luminosity due to metal enrichment. Our simulations show that the combination of multi-wavelength observations by ALMA and JWST will be able to reveal the multi-phase ISM structure and the transition from starbursting to outflowing phases of high-z galaxies.
Stars ejected from the Galactic Center can be used to place important constraints on the Milky Way potential. We have used Hills stars to constrain models for the Galactic potential, demonstrating that meaningful constraint can be obtained if we have samples of around 50 nearby Hills stars.